sources of co2
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 83 (4) ◽  
pp. 247-253
Author(s):  
David C. Owens ◽  
Susanne Rafolt ◽  
Erin M. Arneson

Although climate change garners the bulk of headlines, ocean acidification is an equally important issue that also results from our increasing consumption of fossil fuels. As atmospheric CO2 dissolves into the ocean, the ocean’s pH decreases, making it increasingly difficult for organisms that build calcium carbonate skeletons to grow and thrive. Given that these marine calcifiers – such as corals, snails, shellfish, crustaceans, and plankton – often form the base of oceanic food webs and are habitat and food resources for larger oceanic plants and animals (including humans), ocean acidification poses a serious threat. In this article, we present a series of investigations that provide evidence that increases in anthropogenic sources of CO2 contribute to the acidification of the ocean, and that an increasingly acidic ocean can negatively impact marine calcifiers.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2018
Author(s):  
Antonios Anyfantis ◽  
Spyridon Blionas

This work concerns the performance analysis of the sensors contained in a victim detection system. The system is a mobile platform with gas sensors utilized for real time victim localization in urban environments after a disaster has caused the entrapment of people in partially collapsed building structures. The operating principle of the platform is the sampling of air from potential survival spaces (voids) and the measurement of the sampled air’s temperature and concentration of CO2 and O2. Humans in a survival space are modelled as sources of CO2 and heat and sinks of O2. The physical openings of a survival space are modelled as sources of fresh air and sinks of the internal air. These sources and sinks dynamically affect the monitored properties of the air inside a survival space. In this paper, the effects of fresh air sources and internal air sinks are first examined in relation to local weather conditions. Then, the effect of human sources of CO2 and sinks of O2 in the space are examined. A model is formulated in order to reliably estimate the concentration of CO2 and O2 as a function of time for given reasonable entrapment scenarios. The input parameters are the local weather conditions, the openings of the survival space, and the number and type of entrapped humans. Three different tests successfully verified the presented theoretical estimations. A detection system with gas sensors of specified or measured capabilities, by utilizing this model and based on the expected concentrations, may inform the operator of the minimum required presence of humans in a survival space that can be detected after “some time”.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giulio Bini ◽  
Giovanni Chiodini ◽  
Carlo Lucchetti ◽  
Piergiorgio Moschini ◽  
Stefano Caliro ◽  
...  

Author(s):  
L. G. Vakulenko ◽  
◽  
O. D. Nikolenko ◽  
D. A. Novikov ◽  
P. A. Yan ◽  
...  

A comprehensive study of the composition of sand and silt deposits of the Yu1 horizon of the Vasyuganskaya Formation upper part of the Verkh-Tarskoye oil field has been carried out. Associations of authigenic minerals have been determined in their cement, among which the calcite is the most widespread. According to petrographic parameters, three generations of calcite have been identified for which detailed isotopicgeochemical and ultramicroscopic studies were carried out for the first time. Wide and multi directional changes in the isotopic composition of carbon and oxygen and in the chemical composition of carbonate minerals were recorded, they indicate significant variations in the conditions of diagenesis and catagenesis, primarily temperature, and different sources of CO2. Significant variations in the isotopic composition of formation waters and its relationship with the isotopic composition of carbonates have been established. Thus, a narrow interval of close δ13C values was revealed, amounting to –10.5 to –9.1 ‰ in the formation waters of group II, and from –10.7 to –9.1 ‰ in calcites of the third generation. The source of CO2 in this system should be considered a carbon dioxide, which is formed in the process of metamorphism of carbonate rocks of the Paleozoic age.


2019 ◽  
Author(s):  
Leandra Stephanie Emilia Praetzel ◽  
Nora Plenter ◽  
Sabrina Schilling ◽  
Marcel Schmiedeskamp ◽  
Gabriele Broll ◽  
...  

Abstract. Inland waters are significant sources of CO2 and CH4 to the atmosphere, following recent studies this is particularly the case for small and shallow lakes. The spatial in-lake heterogeneity of CO2 and CH4 production processes and their drivers in the sediment yet remain poorly studied. We thus measured potential CO2 and CH4 production in sediment incubations from 12 sites within the small and shallow crater lake Windsborn in Germany as well as fluxes at the water-atmosphere interface at four sites. Production rates were highly variable and ranged from 7.2 and 38.5 µmol CO2 g C−1 d−1 and from 5.4 to 33.5 µmol CH4 g C−1 d−1. Fluxes lay between 4.5 and 26.9 mmol CO2 m−2 d−1 and between 0 and 9.8 mmol CH4 m−2 d−1. Both CO2 and CH4 production rates and CH4 fluxes were significantly negative (p 


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1309 ◽  
Author(s):  
Antonio Rodero ◽  
Dorota Anna Krawczyk

Carbon dioxide concentration is an important parameter to know Indoor Air Quality of a building. One of the most important sources of CO2 in poor ventilated building is human activity. This work presents a method for experimental determination of human CO2 generation rate based on measuring of time evolution of indoor CO2 concentration. The method is applied to 5 rooms of an educational building from Bialystok (Poland). Similar carbon dioxide gains were obtained in all rooms, around 0.0046 L/s, which correspond to theoretical CO2 generation rates of a sedentary activity for persons, males and females, between 21–30 years old, characteristics of occupants of analyzed rooms.


2017 ◽  
Vol 63 (2) ◽  
pp. 731-740 ◽  
Author(s):  
Xiaoguang Ouyang ◽  
Shing Yip Lee ◽  
Rod M. Connolly

Sign in / Sign up

Export Citation Format

Share Document