The ground-state energy of the B-B′-U Hubbard model in the static-fluctuation approximation

2002 ◽  
Vol 44 (2) ◽  
pp. 216-220 ◽  
Author(s):  
G. I. Mironov
2008 ◽  
Vol 22 (03) ◽  
pp. 257-266 ◽  
Author(s):  
A. S. SANDOUQA ◽  
B. R. JOUDEH ◽  
M. K. AL-SUGHEIR ◽  
H. B. GHASSIB

Spin-polarized atomic deuterium (↓D) is investigated in the static fluctuation approximation with a Morse-type potential. The thermodynamic properties of the system are computed as functions of temperature. In addition, the ground-state energy per atom is calculated for the three species of ↓D : ↓D 1, ↓D 2, and ↓D 3. This is then compared to the corresponding ground-state energy per atom for the ideal gas, and to that obtained by the perturbation theory of the hard sphere model. It is deduced that ↓D is nearly ideal.


2008 ◽  
Vol 131 (6) ◽  
pp. 1139-1154 ◽  
Author(s):  
Robert Seiringer ◽  
Jun Yin

2008 ◽  
Vol 22 (01) ◽  
pp. 33-44 ◽  
Author(s):  
YUN'E GAO ◽  
FUXIANG HAN

Introducing the next-nearest-neighbor hopping t′ into the Bose–Hubbard model, we study its effects on the phase diagram, on the ground-state energy, and on the quasiparticle and quasihole dispersion relations of the Mott insulating phase in optical lattices. We have found that a negative value of t′ enlarges the Mott-insulating region on the phase diagram, while a positive value of t′ acts oppositely. We have also found that the effects of t′ are dependent on the dimensionality of optical lattices with its effects largest in three-dimensional optical lattices.


1996 ◽  
Vol 54 (3) ◽  
pp. 1637-1644 ◽  
Author(s):  
G. Polatsek ◽  
K. W. Becker

1971 ◽  
Vol 36 (2) ◽  
pp. 139-140 ◽  
Author(s):  
W.D. Langer ◽  
D.C. Mattis

1972 ◽  
Vol 27 (6) ◽  
pp. 889-893 ◽  
Author(s):  
Rainer Jelitto

Abstract We have calculated the ground state energy of the Hubbard model in the approximation of Hubbard's first paper1 . For the neutral model with nearest neighbour interaction the energy resulting from the selfconsistent paramagnetic solution is compared with those ones following from the (ferromagnetic) Hartree-Fock and an (antiferromagnetic) single particle theory. The energy of the latter one turns out to be the best approximation of the true ground state energy of the model for all values of the coupling constant V0 , but the energy derived from Hubbard's approximation, in spite of the absence of magnetic ordering, is a reasonable approximation at least for sufficiently large values of V0.


Sign in / Sign up

Export Citation Format

Share Document