Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter

2021 ◽  
Vol 57 (6) ◽  
pp. 568-580
Author(s):  
P. N. Vargin ◽  
V. V. Guryanov ◽  
A. N. Lukyanov ◽  
A. S. Vyzankin
Keyword(s):  
Author(s):  
И.Б. Петров

Существует значительное количество прикладных задач, для решения которых применяется математическое моделирование динамических процессов в деформируемых средах. К таким задачам относят моделирование распространения упругих волн в геологических средах, в том числе с учетом ледовых образований, их рассеяния на зонах трещиноватости. Актуальность этих постановок обусловлена важностью решения обратных задач сейсмической разведки, обработки данных сейсмической разведки с целью уточнения запасов углеводородов и определения расположения углеводородов и других полезных ископаемых. Поэтому приобретает важность разработка высокоточных численных методов, позволяющих моделировать упругие волны в деформируемых средах. Одним из этих методов является сеточно-характеристический численный метод, примененный в данной работе. Этот численный метод применяется для решения прямых задач, то есть для расчета распространения упругих волн при известных параметрах рассматриваемой среды. А для решения обратной задачи по восстановлению параметров геологической среды по данным сейсмической разведки можно применять нейронные сети, для обучения которых можно использовать многократное решение прямых задач сеточно-характеристическим методом. В данной работе приведены примеры решения разнообразных прямых задач по распространению упругих волн в неоднородных геологических средах, в том числе в зоне Арктики, а также представлена постановка задачи по обучению нейронных сетей и графики, показывающие эффективность их обучения с использованием двух различных подходов. Many problems can be solved with the simulation of dynamic processes in deformable media. They are the simulation of elastic wave propagation in rocks including ice formations, and wave scattering on rock-fracture zones. Such studies are important for solving inverse problems of seismic exploration and seismic data processing to get a better estimation of hydrocarbon reserves, locate hydrocarbons and other minerals. Therefore, it is necessary to develop high-precision numerical methods used to simulate elastic waves in deformable media. One of such methods is the grid-characteristic approach used in this work. It is suitable for solving direct problems, i.e., to analyze the propagation of elastic waves in a medium with known properties. Neural networks can be applied to solve the inverse problem: reconstructing the geology from seismic survey data. Multiple solving of direct problems by the gridcharacteristic approach is used for network training. This paper contains some examples of solving a range of direct problems on the elastic wave propagation in heterogeneous rocks, also in the Arctic zone, and the problem statement for training neural networks and graphs is proposed to demonstrate the efficiency of training with two approaches.


2021 ◽  
Author(s):  
Matthew T. Bray ◽  
Steven M. Cavallo

Abstract. Tropopause polar vortices (TPVs) are closed circulations centered on the tropopause that form and predominately reside in high latitudes. Due to their attendant flow, TPVs have been shown to influence surface weather features, and thus, a greater understanding of the dynamics of these features may improve our ability to forecast impactful weather events. In this study, we focus on the subset of TPVs which have lifetimes of longer than two weeks (the ninety-fifth percentile of all TPV cases between 1979 and 2018); these long-lived vortices offer a unique opportunity to study the conditions under which TPVs strengthen and analyze patterns of vortex formation and movement. Using ERA-Interim data, along with TPV tracks derived from the same reanalysis, we investigate the formation, motion, and development of these long-lived vortices. We find that these long-track TPVs are significantly stronger, occur more often in the summer, and tend to remain more poleward than an average TPV. Similarly, these TPVs are shown to form at higher latitudes than average. Long-lived TPVs form predominately by splitting from existing vortices, but a notable minority seem to generate via dynamic processes in the absence of pre-existing TPVs. These non-likely split genesis events are found to occur in select geographic regions, driven by Rossby wave growth and breaking. Notable differences emerge between the lifecycles of long-lived vortices in the summer and winter, specifically with regards to equatorward progression and amplitude. These long-lived TPVs also appear as likely as any TPV to exit the Arctic and move into the mid-latitudes, though this often occurs late in the vortex lifetime, immediately preceding vortex lysis in most cases.


2021 ◽  
pp. 1-54
Author(s):  
J. V. Lukovich ◽  
Julienne Stroeve ◽  
Alex Crawford ◽  
Lawrence Hamilton ◽  
Michel Tsamados ◽  
...  

AbstractIn this study the impact of extreme cyclones on Arctic sea ice in summer is investigated. Examined in particular are relative thermodynamic and dynamic contributions to sea ice volume budgets in the vicinity of Arctic summer cyclones in 2012 and 2016. Results from this investigation illustrate sea ice loss in the vicinity of the cyclone trajectories during each year were associated with different dominant processes: thermodynamic (melting) in the Pacific sector of the Arctic in 2012, and both thermodynamic and dynamic processes in the Pacific sector of the Arctic in 2016. Comparison of both years further suggests that the Arctic minimum sea ice extent is influenced by not only the strength of the cyclone, but also by the timing and location relative to the sea ice edge. Located near the sea ice edge in early August in 2012, and over the central Arctic later in August in 2016, extreme cyclones contributed to comparable sea ice area (SIA) loss, yet enhanced sea ice volume loss in 2012 relative to 2016.Central to a characterization of extreme cyclone impacts on Arctic sea ice from the perspective of thermodynamic and dynamic processes, we present an index describing relative thermodynamic and dynamic contributions to sea ice volume changes. This index helps to quantify and improve our understanding of initial sea ice state and dynamical responses to cyclones in a rapidly warming Arctic, with implications for seasonal ice forecasting, marine navigation, coastal community infrastructure and designation of protected and ecologically sensitive marine zones.


2020 ◽  
Vol 45 (6) ◽  
pp. 387-397 ◽  
Author(s):  
P. N. Vargin ◽  
A. N. Luk’yanov ◽  
B. M. Kiryushov
Keyword(s):  

2021 ◽  
pp. 70-83
Author(s):  
N. D. TSVETKOVA ◽  
◽  
P. N. VARGIN ◽  
A. N. LUK'YANOV ◽  
B. M. KIRYUSHOV ◽  
...  

The estimates of chemical ozone depletion in winter-spring seasons are given for the Arctic stratosphere based on long-term observations of the vertical distribution of ozone. The features and possible causes for an unusually strong and stable stratospheric polar vortex in the Arctic in the winter 2019/2020, that led to a record ozone loss in recent years, and the dynamic processes associated with this polar vortex are analyzed. The TRACAO trajectory model and ERA5 reanalysis are used for the comparative analysis of ozone depletion in the polar vortex in the winter-spring seasons 2010/2011 and 2019/2020.


2021 ◽  
Vol 46 (9) ◽  
pp. 606-615
Author(s):  
N. D. Tsvetkova ◽  
P. N. Vargin ◽  
A. N. Lukyanov ◽  
B. M. Kiryushov ◽  
V. A. Yushkov ◽  
...  

Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


Author(s):  
Mark C. Serreze ◽  
Roger G. Barry

Sign in / Sign up

Export Citation Format

Share Document