scholarly journals Characteristics of long-track tropopause polar vortices

2021 ◽  
Author(s):  
Matthew T. Bray ◽  
Steven M. Cavallo

Abstract. Tropopause polar vortices (TPVs) are closed circulations centered on the tropopause that form and predominately reside in high latitudes. Due to their attendant flow, TPVs have been shown to influence surface weather features, and thus, a greater understanding of the dynamics of these features may improve our ability to forecast impactful weather events. In this study, we focus on the subset of TPVs which have lifetimes of longer than two weeks (the ninety-fifth percentile of all TPV cases between 1979 and 2018); these long-lived vortices offer a unique opportunity to study the conditions under which TPVs strengthen and analyze patterns of vortex formation and movement. Using ERA-Interim data, along with TPV tracks derived from the same reanalysis, we investigate the formation, motion, and development of these long-lived vortices. We find that these long-track TPVs are significantly stronger, occur more often in the summer, and tend to remain more poleward than an average TPV. Similarly, these TPVs are shown to form at higher latitudes than average. Long-lived TPVs form predominately by splitting from existing vortices, but a notable minority seem to generate via dynamic processes in the absence of pre-existing TPVs. These non-likely split genesis events are found to occur in select geographic regions, driven by Rossby wave growth and breaking. Notable differences emerge between the lifecycles of long-lived vortices in the summer and winter, specifically with regards to equatorward progression and amplitude. These long-lived TPVs also appear as likely as any TPV to exit the Arctic and move into the mid-latitudes, though this often occurs late in the vortex lifetime, immediately preceding vortex lysis in most cases.

2020 ◽  
Author(s):  
Syed Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Synoptic-scale Rossby wave-packets have a recurrent pattern during several episodes of persistent surface weather which is termed as 'recurrent Rossby wave-packets' (RRWP). They result in a statistically significant increase in winter cold and summer hot spells over large areas of the Northern Hemisphere mid-latitudes.</p><p>We present a global climatology of the RRWPs to study its spatial and seasonal variation. We also investigate the link of RRWPs to persistent surface extremes in the Southern Hemisphere (SH).  We find that RRWPs result in a statistically significant increase in winter cold and summer hot spells over broad areas in Australia and South America. Furthermore, we discuss the effects of climatological oscillations (Madden Julian Oscillation, ENSO, etc) on influencing the RRWPs.</p>


Author(s):  
Andrew Clarke

A diurnal (circadian) rhythm in body temperature is a widespread, and possibly universal, feature of endotherms. Some mammals and birds down-regulate their metabolic rate significantly by night, allowing their body temperature to drop sufficiently that they become inactive and enter torpor. Both the minimum temperature achieved and the duration of torpor are highly variable. Daily torpor is principally a response to reduced energy intake, and a drop in ambient temperature. Hibernation is essentially an extreme form of torpor. Small mammals hibernating at high latitudes have regular arousals during which they urinate and may feed. Bears hibernate with relatively high body temperature, and do not undergo arousal. Only one bird, the poorwill, is known to hibernate. Rewarming during arousal may be fuelled exclusively by metabolism (for example in small mammals in the Arctic) or with significant energy input from basking (for example in subtropical arid areas). The capacity for torpor appears to be an ancestral character in both mammals and birds, possibly related to the origin of endothermy in small species subject to marked diurnal and/or seasonal variation in body temperature. Both deep hibernation and strict endothermy are probably derived characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Estrada ◽  
Dukpa Kim ◽  
Pierre Perron

AbstractDue to various feedback processes called Arctic amplification, the high-latitudes’ response to increases in radiative forcing is much larger than elsewhere in the world, with a warming more than twice the global average. Since the 1990’s, this rapid warming of the Arctic was accompanied by no-warming or cooling over midlatitudes in the Northern Hemisphere in winter (the hiatus). The decrease in the thermal contrast between Arctic and midlatitudes has been connected to extreme weather events in midlatitudes via, e.g., shifts in the jet stream towards the equator and increases in the probability of high-latitude atmospheric blocking. Here we present an observational attribution study showing the spatial structure of the response to changes in radiative forcing. The results also connect the hiatus with diminished contrast between temperatures over regions in the Arctic and midlatitudes. Recent changes in these regional warming trends are linked to international actions such as the Montreal Protocol, and illustrate how changes in radiative forcing can trigger unexpected responses from the climate system. The lesson for climate policy is that human intervention with the climate is already large enough that even if stabilization was attained, impacts from an adjusting climate are to be expected.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


2021 ◽  
Vol 57 (6) ◽  
pp. 568-580
Author(s):  
P. N. Vargin ◽  
V. V. Guryanov ◽  
A. N. Lukyanov ◽  
A. S. Vyzankin
Keyword(s):  

2021 ◽  
Author(s):  
Christoph Fischer ◽  
Elmar Schömer ◽  
Andreas H. Fink ◽  
Michael Riemer ◽  
Michael Maier-Gerber

<p>Potential vorticity streamers (PVSs) are elongated quasi-horizontal filaments of stratospheric air in the upper troposphere related to, for example, Rossby wave breaking events. They are known to be related to partly extreme weather events in the midlatitudes and subtropics and can also be involved in (sub-)tropical cyclogenesis. While several algorithms have been developed to identify and track PVSs on planar isentropic surfaces, less is known about the evolution of these streamers in 3D, both climatologically but also for a better understanding of individual weather events. Furthermore, characteristics of their 3D shape have barely been considered as a predictor for high impact weather events like (sub-)tropical cyclones.</p><p>We introduce a novel algorithm for detection and identification of PVSs based on image processing techniques which can be applied to 2D and 3D gridded datasets. The potential vorticity was taken from high resolution isentropic analyses based on the ERA5 dataset. The algorithm uses the 2 PVU (Potential Vorticity Unit) threshold to identify and extract anomalies in the PV field using signed distance functions. This is accomplished by using a stereographic projection to eliminate singularities and keeping track of the reduced distortions by storing precomputed distance maps. This approach is computationally efficient and detects more interesting structures that exhibit the general behavior of PVSs compared to existing 2D techniques.</p><p>For each identified object a feature vector is computed, containing the individual characteristics of the streamers. In the 3D case, the algorithm looks at the structure en bloc instead of operating individually on multiple 2D levels. This also makes the identification stable regarding the seasonal cycle. Feature vectors contain parameters about quality, intensity and shape. In the case of 2D datasets, best-fitting ellipses computed from the statistical moments are regarded as a description of their shape. For 3D datasets, recent visualizations show that the boundary of these structures could be approximated by quadric surfaces . The feature vectors are also amended by tracking information, for example splitting and merging events. This low-dimensional representation serves as base for ERA5 climatologies. The data will be correlated with (sub-)tropical cyclone occurrence to spot useful and novel predictors for cyclone activity and preceding Rossby Wave Breaking events.</p><p>Overall, this new type of PVS identification algorithm, applicable in 2D or 3D, allows to diagnose the role of PVS in extreme weather events, including their predictability in ensemble forecasts.</p>


2014 ◽  
Vol 27 (14) ◽  
pp. 5601-5610 ◽  
Author(s):  
Michael Sigmond ◽  
Theodore G. Shepherd

Abstract Following recent findings, the interaction between resolved (Rossby) wave drag and parameterized orographic gravity wave drag (OGWD) is investigated, in terms of their driving of the Brewer–Dobson circulation (BDC), in a comprehensive climate model. To this end, the parameter that effectively determines the strength of OGWD in present-day and doubled CO2 simulations is varied. The authors focus on the Northern Hemisphere during winter when the largest response of the BDC to climate change is predicted to occur. It is found that increases in OGWD are to a remarkable degree compensated by a reduction in midlatitude resolved wave drag, thereby reducing the impact of changes in OGWD on the BDC. This compensation is also found for the response to climate change: changes in the OGWD contribution to the BDC response to climate change are compensated by opposite changes in the resolved wave drag contribution to the BDC response to climate change, thereby reducing the impact of changes in OGWD on the BDC response to climate change. By contrast, compensation does not occur at northern high latitudes, where resolved wave driving and the associated downwelling increase with increasing OGWD, both for the present-day climate and the response to climate change. These findings raise confidence in the credibility of climate model projections of the strengthened BDC.


2015 ◽  
Vol 8 (10) ◽  
pp. 4025-4041 ◽  
Author(s):  
H.-J. Kang ◽  
J.-M. Yoo ◽  
M.-J. Jeong ◽  
Y.-I. Won

Abstract. Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16–24 April and 15–23 September) 2003–2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to −2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade−1) in the northern high regions (70–80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.


2019 ◽  
Author(s):  
Susanne Kraemer ◽  
Arthi Ramachandran ◽  
David Colatriano ◽  
Connie Lovejoy ◽  
David A. Walsh

AbstractThe Arctic Ocean is relatively isolated from other oceans and consists of strongly stratified water masses with distinct histories, nutrient, temperature and salinity characteristics, therefore providing an optimal environment to investigate local adaptation. The globally distributed SAR11 bacterial group consists of multiple ecotypes that are associated with particular marine environments, yet relatively little is known about Arctic SAR11 diversity. Here, we examined SAR11 diversity using ITS analysis and metagenome-assembled genomes (MAGs). Arctic SAR11 assemblages were comprised of the S1a, S1b, S2, and S3 clades, and structured by water mass and depth. The fresher surface layer was dominated by an ecotype (S3-derived P3.2) previously associated with Arctic and brackish water. In contrast, deeper waters of Pacific origin were dominated by the P2.3 ecotype of the S2 clade, within which we identified a novel subdivision (P2.3s1) that was rare outside the Arctic Ocean. Arctic S2-derived SAR11 MAGs were restricted to high latitudes and included MAGs related to the recently defined S2b subclade, a finding consistent with bi-polar ecotypes and Arctic endemism. These results place the stratified Arctic Ocean into the SAR11 global biogeography and have identified SAR11 lineages for future investigation of adaptive evolution in the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document