Multidimensional stability domain of special polynomial families

2007 ◽  
Vol 68 (12) ◽  
pp. 2128-2141 ◽  
Author(s):  
E. N. Gryazina ◽  
B. T. Polyak
2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950013 ◽  
Author(s):  
A. S. Mirabbashi ◽  
A. Mazidi ◽  
M. M. Jalili

In this paper, both experimental and analytical flutter analyses are conducted for a typical 5-degree of freedon (5DOF) wing section carrying a flexibly mounted unbalanced engine. The wing flexibility is simulated by two torsional and longitudinal springs at the wing elastic axis. One flap is attached to the wing section by a torsion spring. Also, the engine is connected to the wing by two elastic joints. Each joint is simulated by a spring and damper unit to bring the model close to reality. Both the torsional and longitudinal motions of the engine are considered in the aeroelastic governing equations derived from the Lagrange equations. Also, Peter’s finite state model is used to simulate the aerodynamic loads on the wing. Effects of various engine parameters such as position, connection stiffness, mass, thrust and unbalanced force on the flutter of the wing are investigated. The results show that the aeroelastic stability region is limited by increasing the engine mass, pylon length, engine thrust and unbalanced force. Furthermore, increasing the damping and stiffness coefficients of the engine connection enlarges the stability domain.


1997 ◽  
Vol 09 (05) ◽  
pp. 609-633 ◽  
Author(s):  
Hagen Neidhardt ◽  
Valentin Zagrebnov

Let the pair of self-adjoint operators {A≥0,W≤0} be such that: (a) there is a dense domain [Formula: see text] such that [Formula: see text] is semibounded from below (stability domain), (b) the symmetric operator [Formula: see text] is not essentially self-adjoint (singularity of the perturbation), (c) the Friedrichs extension [Formula: see text] of [Formula: see text] is maximal with respect to W, i.e., [Formula: see text]. [Formula: see text]. Let [Formula: see text] be a regularizing sequence of bounded operators which tends in the strong resolvent sense to W. The abstract problem of the right Hamiltonian is: (i) to give conditions such that the limit H of self-adjoint regularized Hamiltonians [Formula: see text] exists and is unique for any self-adjoint extension [Formula: see text] of [Formula: see text], (ii) to describe the limit H. We show that under the conditions (a)–(c) there is a regularizing sequence [Formula: see text] such that [Formula: see text] tends in the strong resolvent sense to unique (right Hamiltonian) [Formula: see text], otherwise the limit is not unique.


Sign in / Sign up

Export Citation Format

Share Document