Calculation of the amount of free water molecules in aqueous solutions by means of spectral parameters from the terahertz frequency domain taking into account processes of screening

BIOPHYSICS ◽  
2014 ◽  
Vol 59 (3) ◽  
pp. 347-350 ◽  
Author(s):  
N. V. Penkov ◽  
V. A. Yashin ◽  
E. E. Fesenko ◽  
E. E. Fesenko
2012 ◽  
Vol 27 ◽  
pp. 565-569 ◽  
Author(s):  
O. F. Nielsen ◽  
M. Bilde ◽  
M. Frosch

Microorganisms require water for their metabolic activities. Only a fraction of water in foodstuffs, the so-called free water, is available for this purpose. The amounts of free water previously estimated by two different methods (Frosch et al. (2010), Frosch et al. (2011), and Low (1969)) are compared for aqueous solutions of four electrolytes, NaCl, NH4Cl, Na2SO4, (NH4)2SO4: (i) vapour pressure measurements of the solutions relative to that of pure water (water activities) and (ii) low-wavenumber Raman spectra in the R(ν)-representation. For each electrolyte deviations were found between results from the two methods. All water molecules in the illuminated volume contribute to the Raman data. The vapor pressure measurements refer to water molecules at the water/atmosphere interface where surface tension is important. Differences in surface tension for the four electrolytes qualitatively explain deviations between the amounts of “free water” observed by the two methods.


2015 ◽  
Vol 60 (8) ◽  
pp. 757-763 ◽  
Author(s):  
V.P. Voloshin ◽  
◽  
G.G. Malenkov ◽  
Yu.I. Naberukhin ◽  
◽  
...  

1980 ◽  
Vol 45 (6) ◽  
pp. 1639-1645 ◽  
Author(s):  
Jindřich Novák ◽  
Ivo Sláma

The dependence of the equivalent conductivity on the temperature and composition of the Ca(NO3)2-CaI2-H2O system was studied. The ionic fraction [I-]/([I-] + [NO-3]) was changed from 0.1 to 0.5, the mole fraction of calcium salts (assumed in anhydrous form in the presence of free water molecules) was 0.075-0.200. The equivalent conductivity was found to be a linear function of the ionic fraction at constant temperature and salt concentration.


2006 ◽  
Vol 61 (6) ◽  
pp. 758-765 ◽  
Author(s):  
Matthias Nolte ◽  
Ingo Pantenburg ◽  
Gerd Meyer

[{Hg(CF3)2}(ThpH)(H2O)](H2O) (1), [{Hg4(Thp)4}(ClO4)4(H2O)8](H2O)4 (2), [{Hg(ThpH)2} (NO3)](NO3) (3) and {Hg(Thp)Cl}(H2O) (4) (ThpH = theophylline, C7H8N4O2) have been synthesized by slow evaporation of aqueous solutions of the mercuric salts Hg(CF3)2, Hg(ClO4)2, Hg(NO3)2, or HgCl2 and theophylline. Their crystal structures were determined on the basis of single crystal X-ray data. The coordination polymers 1 and 2 crystallize with triclinic symmetry, P1̅ (no. 2), with a = 468.8(2), b = 1256.4(5), c = 1445.5(6) pm, α = 67.15(3), β = 89.21(3), γ = 89.40(3)° and a = 833.6(1), b = 1862.7(2), c = 2182.9(2) pm, α = 111.61(1), β = 90.98(1), γ = 95.51(1)°, respectively. 3 and 4 crystallize with monoclinic symmetry, Pc (no. 7), a =1194.1(1), b=1258.8(2), c=735.5(2) pm, β =96.96(2)° and P21/n (no. 14), a=1069.0(2), b =911.6(1), c=1089.9(2) pm and β = 96.87(2)°. In 1 the theophylline molecules are non-coordinating to mercury and leave the Hg(CF3)2 molecule unchanged. Only weak electrostatic attractions to one keto-oxygen atom of theophylline and one water molecule hold this co-crystallisate together. In 2, the theophyllinate anion, Thp−, strongly coordinates with both N(7) and N(9) to HgII forming a large ring with eight Hg atoms that incorporates the water molecules. One sort of nitrate ions in 3 is weakly attached to HgII with the theophylline molecules still bound strongly through N(9). The chloride ligand and the theophyllinate ion seem to have the same strengths as ligands in 4 as they are both attached to HgII with the shortest distances possible


1991 ◽  
Vol 16 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Kunihiro Hamada ◽  
Haruhiko Nonogaki ◽  
Yoshihiro Fukushima ◽  
Baljir Munkhbat ◽  
Masaru Mitsuishi

1969 ◽  
Vol 24 (10) ◽  
pp. 1502-1511
Author(s):  
Karl Heinzinger

Abstract There are two kinds of water in CuSO4·5H2O differing by their binding in the crystal. The oxygen of four water molecules is bonded to the copper ion, that of the fifth molecule is hydrogen bonded. It is shown that the D/H ratios of these two kinds of water differ by 5.7%, the light isotope being enriched in the water molecules coordinated with the copper ion. The results show that there is no exchange of the hydrogen isotopes during the time needed for dehydration at room temperature which takes several days. The assumption has been confirmed that the water coordinated with the copper ion leaves the crystal first on dehydration at temperatures below 50 °C. Additional measurements of the separation factor for the hydrogen isotopes between water vapor and copper sulfate solutions allow conclusions on the fractionation of the hydrogen isotopes between bulk water and hydration water in aqueous solutions.


Author(s):  
Shimul C Saha ◽  
James P. Grant ◽  
Yong Ma ◽  
A. Khalid ◽  
Feng Hong ◽  
...  

2011 ◽  
Vol 80 (4) ◽  
pp. 044604 ◽  
Author(s):  
Masaru Nakada ◽  
Kenji Maruyama ◽  
Osamu Yamamuro ◽  
Tatsuya Kikuchi ◽  
Masakatsu Misawa

Sign in / Sign up

Export Citation Format

Share Document