Study of the passage from a dissipative to a conservative state in two-dimensional nonlinear systems of ordinary differential equations

2012 ◽  
Vol 48 (3) ◽  
pp. 436-440 ◽  
Author(s):  
D. A. Burov ◽  
D. L. Golitsyn ◽  
O. I. Ryabkov
2008 ◽  
Vol 2 (2) ◽  
pp. 146-157 ◽  
Author(s):  
P.G.L. Leach ◽  
S.K. Andriopoulos

We present a short history of the Ermakov equation with an emphasis on its discovery by thewest and the subsequent boost to research into invariants for nonlinear systems although recognizing some of the significant developments in the east. We present the modern context of the Ermakov equation in the algebraic and singularity theory of ordinary differential equations and applications to more divers fields. The reader is referred to the previous article (Appl. Anal. Discrete math., 2 (2008), 123-145) for an english translation of Ermakov's original paper.


2013 ◽  
Vol 5 (2) ◽  
pp. 212-221
Author(s):  
Houguo Li ◽  
Kefu Huang

AbstractInvariant solutions of two-dimensional elastodynamics in linear homogeneous isotropic materials are considered via the group theoretical method. The second order partial differential equations of elastodynamics are reduced to ordinary differential equations under the infinitesimal operators. Three invariant solutions are constructed. Their graphical figures are presented and physical meanings are elucidated in some cases.


Author(s):  
Dibakar Ghosh ◽  
Anirban Ray ◽  
A. Roy Chowdhury

Forced Lorenz system, important in modeling of monsoonlike phenomena, is analyzed for the existence of heteroclinic orbit. This is done in the light of the suggested new mechanism for the onset of chaos by Magnitskii and Sidorov (2006, “Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations,” Diff. Eq., 39, pp. 1593–1602), where heteroclinic orbits plays important and dominant roles. The analysis is performed based on the theory laid down by Shilnikov. An analytic expression in the form of uniformly convergent series is obtained. The same orbit is also obtained numerically by a technique enunciated by Magnitskii and Sidorov, reproducing the necessary important features.


1985 ◽  
Vol 26 (2) ◽  
pp. 161-170
Author(s):  
Zhivko S. Athanassov

In this paper we study the asymptotic behaviour of the following systems of ordinary differential equations:where the identically zero function is a solution of (N) i.e. f(t, 0)=0 for all time t. Suppose one knows that all the solutions of (N) which start near zero remain near zero for all future time or even that they approach zero as time increases. For the perturbed systems (P) and (P1) the above property concerning the solutions near zero may or may not remain true. A more precise formulation of this problem is as follows: if zero is stable or asymptotically stable for (N), and if the functions g(t, x) and h(t, x) are small in some sense, give conditions on f(t, x) so that zero is (eventually) stable or asymptotically stable for (P) and (P1).


Sign in / Sign up

Export Citation Format

Share Document