Factorization of equations with dominating higher partial derivative

2014 ◽  
Vol 50 (1) ◽  
pp. 66-72 ◽  
Author(s):  
V. I. Zhegalov ◽  
O. A. Tikhonova
Keyword(s):  
2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 26
Author(s):  
Young Sik Kim

We investigate the partial derivative approach to the change of scale formula for the functon space integral and we investigate the vector calculus approach to the directional derivative on the function space and prove relationships among the Wiener integral and the Feynman integral about the directional derivative of a Fourier transform.


2014 ◽  
Author(s):  
Grant Sherer ◽  
Mary Bridget Kustusch ◽  
Corinne A. Manogue ◽  
David J. Roundy
Keyword(s):  

1983 ◽  
Vol 57 (1-4) ◽  
pp. 167-179 ◽  
Author(s):  
Shuhei Okubo ◽  
Masanori Saito

1960 ◽  
Vol 4 (03) ◽  
pp. 25-36
Author(s):  
Milton S. Plesset ◽  
T. Yao-tsu Wu

The problem of interest is that of the water waves in a body of water of infinite depth generaied by a thin ship of given hull form, moving with constant velocity U along a straight course on the otherwise undisturbed water surface. A particular method is evaluated for computing the velocity field at an arbitrary distance (not too near the ship) fixed in the fluid. A new proposal is made here that the hull profile be represented by a double Fourier series with its half-periods spanning over the region occupied by the longitudinal mid-section of the ship. The convergence of this series representation is found to be satisfactorily rapid, especially when the tangent plane of the hull is everywhere continuous. In the latter case the longitudinal slope of the hull, which is the only partial derivative appearing in the analysis, is found in a specific case to be well represented by the partial derivative of the series. With this series representation of the hull, the analysis of the velocity-field calculation is greatly reduced so that the final result can be expressed in terms of a combination of several single and double Fourier integrals which are susceptible to numerical methods. However, for large values of or, where r is the distance from the ship, a = gL/U2, with g being the acceleration of gravity and L the ship length, these integrals can be evaluated with good approximation by asymptotic methods. The method of stationary phase and other asymptotic methods are employed in different regions in the water and the final expression for the velocity field is given explicitly. The numerical result for a specific ship will be given elsewhere.


Sign in / Sign up

Export Citation Format

Share Document