Simplified system of equations for calculating the stability of the boundary layer gas flow on a swept wing

2014 ◽  
Vol 49 (4) ◽  
pp. 447-453
Author(s):  
S. V. Manuilovich
2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


The instability of an infinite swept attachment line boundary layer is considered in the linear régime. The basic three-dimensional flow is shown to be susceptible to travelling wave disturbances that propagate along the attachment line. The effect of suction on the instability is discussed and the results suggest that the attachment line boundary layer on a swept wing can be significantly stabilized by extremely small amounts of suction. The results obtained are in excellent agreement with the available experimental observations.


2013 ◽  
Vol 736 ◽  
pp. 216-249 ◽  
Author(s):  
Vasily Vedeneev

AbstractWe investigate the stability of an elastic plate in supersonic gas flow. This problem has been studied in many papers regarding panel flutter, where uniform flow is usually considered. In this paper, we take the boundary layer on the plate into account and investigate its influence on plate stability. Three problem formulations are studied. First, we investigate the stability of travelling waves in an infinite-length plate. Second, the nature of the instability (absolute or convective instability) is examined. Finally, by using solutions of the first two problems, instability of a long finite-length plate is studied by using Kulikovskii’s global instability criterion. The following results are obtained. All the eigenmodes of a finite-length plate are split into two types, which we call subsonic and supersonic. The influence of the boundary layer on these eigenmodes can be of two kinds. First, for a generalized convex boundary layer profile (typical for accelerating flow), supersonic eigenmodes are stabilized by the boundary layer, whereas subsonic disturbances are destabilized. Second, for a profile with a generalized inflection point (typical for constant and decelerating flows), supersonic eigenmodes are destabilized in a thin boundary layer and stabilized in a thick layer; subsonic eigenmodes are damped. The correspondence between the influence of the boundary layer on panel flutter and the stability of the boundary layer over a rigid wall is established. Examples of stable boundary layer profiles of both types are given.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2018 ◽  
Vol 49 (4) ◽  
pp. 415-427
Author(s):  
Igor Ivanovich Lipatov ◽  
Vladimir Yakovlevich Neiland

2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Sign in / Sign up

Export Citation Format

Share Document