A Statistical Study of Process Variables to Optimize a High Speed Curtain Coater: Part I

TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.

TAPPI Journal ◽  
2009 ◽  
Vol 8 (2) ◽  
pp. 29-32
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

In Part I of this work, we identified four important process, base sheet, and formulation variables that strongly influence the runnability of a curtain coater at high speed, using a Taguchi orthogonal array experimen-tal design approach. The effects identified are base sheet roughness, coating rheology, curtain height, and the amount of steam applied in the boundary layer air removal system (steam substitution system [SSS]). In the second phase of our study, we examine the contribution of these four variables on curtain coating stability in more depth using a D-optimal design of experiment. The results show the set-up of the boundary layer air removal system to be the most critical variable to maintaining the stability of the curtain. We found base sheet roughness, in combination with the parameters of the coating formulation, to also be very important. Coating coverage improved with the smoothness of the base sheet and excellent coating coverage was attainable at low coat weights. A shear thinning coating was found to provide the most favorable coating rheology for curtain stability at high speeds.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2002 ◽  
Vol 472 ◽  
pp. 229-261 ◽  
Author(s):  
LUCA BRANDT ◽  
DAN S. HENNINGSON

A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate boundary layer is studied. In many shear flows, the perturbations that show the highest potential for transient energy amplification consist of streamwise-aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. In a previous investigation (Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient boundary layer was studied by means of Floquet theory and numerical simulations. The sinuous instability mode was found to be the most dangerous disturbance. We present here the first simulation of the breakdown to turbulence originating from the sinuous instability of streamwise streaks. The main structures observed during the transition process consist of elongated quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of alternating sign are overlapping in the streamwise direction in a staggered pattern. The present scenario is compared with transition initiated by Tollmien–Schlichting waves and their secondary instability and by-pass transition initiated by a pair of oblique waves. The relevance of this scenario to transition induced by free-stream turbulence is also discussed.


2001 ◽  
Vol 124 (2) ◽  
pp. 398-405 ◽  
Author(s):  
S. Yoshimoto ◽  
S. Oshima ◽  
S. Danbara ◽  
T. Shitara

In this paper, the stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles is investigated theoretically and experimentally. In these bearing types, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes located at one end of each spiral groove. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes, which results from shaft rotation. In addition, water pressure is also increased by the viscous pumping effect of the spiral grooves. The stability of the proposed bearing is theoretically predicted using the perturbation method, and calculated results are compared with experimental results. It was consequently found that the proposed bearing is very stable at high speeds and theoretical predictions show good agreement with experimental data.


1951 ◽  
Vol 55 (485) ◽  
pp. 285-302 ◽  
Author(s):  
A. D. Young

SummaryIn this paper an attempt is made to review present knowledge of the subject of boundary layers at high speeds, without delving too deeply into the theory, and to draw attention to the results of practical interest. The introductory remarks describe broadly the special features of boundary layers in compressible flow, namely the existence of both thermal and velocity layers and their interdependence, the sensitivity of the external flow to the layers, and their inter-action with shock waves. The results of importance arising from the theory of the laminar boundary layer and of its stability to small disturbances are then discussed, followed by a summary of the present inadequate state of knowledge of turbulent boundary layer characteristics. It is noted that progress in the latter must await the production of more experimental data. The paper concludes with a discussion of scale effects and the allied problem of boundary layer—shock wave inter-action.


1990 ◽  
Vol 112 (4) ◽  
pp. 473-482 ◽  
Author(s):  
B. Halder ◽  
A. Mukherjee ◽  
R. Karmakar

A combination of a squeeze film damper and a plane journal bearing is studied as a stabilizing scheme. The damper is made to play the role of a stabilizer to postpone the instability threshold speeds of flexible rotors. Both Newtonian and viscoelastic fluids are used in the rotor-bearing system. Dynamics of the system is theoretically analyzed using bond graphs. Analysis reveals that the use of a Newtonian fluid in the stabilizer largely improves the high speed stability range. However, viscoelastic stabilizing fluid has a detrimental effect on highly flexible rotors. Experimental investigations, conducted on a flexible rotor (natural frequency, 30 Hz), confirm the theoretical findings. In addition, experiments indicate that though the use of viscoelastic stabilizing fluids leads to instability in flexible rotors, the growth of large amplitude whirl is postponed to very high speeds.


1971 ◽  
Vol 44 (4) ◽  
pp. 962-995 ◽  
Author(s):  
A. G. Veith

Abstract We have shown that the cornering wet traction performance of tires, as measured with a special cornering trailer, is influenced by a number of factors and their interaction with each other. Unlike conventional low speed “spin-out” wet cornering traction testing, we have evaluated tire traction over the range 30–60 mph. Over this range there is a marked speed dependence in the rating of various tread rubbers and tread patterns. In general, tread rubbers show a wide range of performance ratings at the lower speeds (30–35 mph) and a narrower range at high speeds (55–60 mph). Various tread patterns on the contrary show similar behavior at low speeds but a wide divergence in traction level at high speeds. Higher durometer tread compounds show improved high speed traction for any given rubber. Tread hardness cannot be used as an omnibus indicator of wet traction performance, however, as each rubber has its own separate correlation line. Low coefficient pavement can have either low or high degrees of macrotexture, but the lack of microtexture or harshness (asperities in the fraction of a millimeter range) produces this type of pavement. Tires must perform safely on such pavement sections of public highways and the testing reported here was done on such test surfaces. Evaluations of four types of tread rubber show that they rank from high to low traction level in the order: SBR, Butyl, NR and BR (solution type) on smooth, low microtexture surfaces. Although BR gives low traction when used alone it is not so used in commercial tread compounds. When properly blended with SBR or NR, tread compounds containing BR give satisfactory traction performance and improved wear performance. The overall behavior of tires can be explained in terms of the concepts of hydrodynamic and boundary layer lubrication. At low speeds boundary layer lubrication predominates on all but the smoothest pavements. This accounts for the marked influence of tread rubber at low speeds. At high speeds both thick and thin film elastohydrodynamic lubrication predominate. In this speed range tread materials play a lesser role and tread pattern or geometry plays a larger role. The relative softness and deformability of tread compound, compared to pavement aggregate, accounts for the importance of elastohydrodynamic lubrication. Drawing on the work of many previous investigators and the data of this work it is postulated that the fraction of the tire contact area of a cornering tire that is in the elastohydrodynamic mode of lubrication is a linear function of speed. This accounts for the good linearity of the plots of traction as a function of speed. Test variability is discussed and steps taken to measure and control such relevant factors as water depth are outlined. The use of statistically designed testing programs with their inherent averaging character are advocated for those doing this work. In addition to their power at averaging test results, such designs uncover the strong interaction between tire and test variables that underlie all wet traction testing.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
R. Srivastava ◽  
J. Panovsky ◽  
R. Kielb ◽  
L. Virgin ◽  
K. Ekici

A new mechanism for fan stator vane failure in turbofan engines at high speed and high loading has been identified and reported in this paper. Highly destructive vane failures have been encountered at Honeywell in a development fan with composite stator vanes. Measured data indicated nonlinear high amplitude vibratory response in fan stator vanes on the stall side of the fan map at high speeds. Analysis showed that under certain steady loading, vane fixity at the hub could change, significantly reducing the vane natural frequency. At this lower natural frequency, the vane was found to be aeroelastically unstable, and calculated response exhibited characteristics similar to those observed during failure. An engine test conducted to validate the role of hub fixity in vane failures showed the failure to be a self-excited phenomenon and not driven by an external source of excitation. It was also shown that failures occur in vanes that are not rigidly fixed, validating the role of hub fixity in vane failures. Test results along with analysis confirm the role of time dependent hub fixity leading to the highly destructive flutter responsible for vane failures.


2013 ◽  
Vol 372 ◽  
pp. 459-462
Author(s):  
Ming Chang Tsai ◽  
Te Ching Hsiao ◽  
Shyh Chour Huang

In the past few years, it has become a tendency to develop machinery of high speeds and high precision. In order to meet the need for high-speed manufacturing of high precision components, the machine tools structure must be very stiff and have high cutting stability levels. Should the process of the firsthand milling be unstable, the effects include cutting tool breakages, decrease in surface accuracy and could even shorten the machine tolls lifespan. Thus, in the manufacturing of milling, chattering often causes problems for the manufacturer. To prevent cases of milling chattering, there is a need to use a chatter stability lobe to predict the chatter stability and to analyze the effect the modal-parameter has on the stability of milling. This research paper uses the Zero-Order Analytical Method (ZOA) to analyze and compare the effects modal-parameter (natural frequency, damping ratio, modal stiffness) has on the stability of the milling system. The results show that level of stiffness and the damping ratio influences the vertical shape of the chatter stability lobes while the natural frequency affects the lateral shape of the lobes.


Sign in / Sign up

Export Citation Format

Share Document