Uniform and Nonuniform Asymptotics of Far Surface Fields from a Flashed Localized Source

2021 ◽  
Vol 56 (7) ◽  
pp. 975-980
Author(s):  
V. V. Bulatov ◽  
Yu. V. Vladimirov ◽  
I. Yu. Vladimirov
1996 ◽  
Vol 176 ◽  
pp. 53-60 ◽  
Author(s):  
J.-F. Donati

In this paper, I will review the capabilities of magnetic imaging (also called Zeeman-Doppler imaging) to reconstruct spot distributions of surface fields from sets of rotationnally modulated Zeeman signatures in circularly polarised spectral lines. I will then outline a new method to measure small amplitude magnetic signals (typically 0.1% for cool active stars) with very high accuracy. Finally, I will present and comment new magnetic images reconstructed from data collected in 1993 December at the Anglo-Australian Telescope (AAT).


2004 ◽  
Vol 24 (5) ◽  
pp. 339-356
Author(s):  
Q. A. NAQVI ◽  
K. HONGO

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gökhan Alkaç ◽  
Mehmet Kemal Gümüş ◽  
Mustafa Tek

Abstract The Kerr-Schild double copy is a map between exact solutions of general relativity and Maxwell’s theory, where the nonlinear nature of general relativity is circumvented by considering solutions in the Kerr-Schild form. In this paper, we give a general formulation, where no simplifying assumption about the background metric is made, and show that the gauge theory source is affected by a curvature term that characterizes the deviation of the background spacetime from a constant curvature spacetime. We demonstrate this effect explicitly by studying gravitational solutions with non-zero cosmological constant. We show that, when the background is flat, the constant charge density filling all space in the gauge theory that has been observed in previous works is a consequence of this curvature term. As an example of a solution with a curved background, we study the Lifshitz black hole with two different matter couplings. The curvature of the background, i.e., the Lifshitz spacetime, again yields a constant charge density; however, unlike the previous examples, it is canceled by the contribution from the matter fields. For one of the matter couplings, there remains no additional non-localized source term, providing an example for a non-vacuum gravity solution corresponding to a vacuum gauge theory solution in arbitrary dimensions.


2010 ◽  
Vol 661 ◽  
pp. 446-481 ◽  
Author(s):  
YUE YANG ◽  
D. I. PULLIN

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t = 0) for Taylor–Green and Kida–Pelz velocity fields, which, at t = 0, satisfy ω·∇φ = 0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces φ = C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking φ as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions.


2016 ◽  
Vol 46 (10) ◽  
pp. 3155-3163 ◽  
Author(s):  
Claudia Cenedese ◽  
V. Marco Gatto

AbstractIdealized laboratory experiments have been conducted in a two-layer stratified fluid to investigate the leading-order dynamics that control submarine melting and meltwater export near a vertical ice–ocean interface as a function of subglacial discharge. In summer, the discharge of surface runoff at the base of a glacier (subglacial discharge) generates strong buoyant plumes that rise along the glacier front entraining ambient water along the way. The entrainment enhances the heat transport toward the glacier front and hence the submarine melt rate increases with the subglacial discharge rate. In the laboratory, the effect of subglacial discharge is simulated by introducing freshwater at freezing temperature from a point source at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous observational and numerical studies. Buoyant plumes rise vertically until they find either their neutrally buoyant level or the free surface. Hence, the meltwater can deposit within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The heat budget in the tank, calculated following a new framework, gives estimates of submarine melt rate that increase with the subglacial discharge and are in agreement with the directly measured submarine melting. This laboratory study provides the first direct measurements of submarine melt rates for different subglacial discharges, and the results are consistent with the predictions of previous theoretical and numerical studies.


1977 ◽  
Vol 24 (11) ◽  
pp. 1304-1310 ◽  
Author(s):  
V.A.K. Temple ◽  
B. Baliga ◽  
M.S. Adler

Sign in / Sign up

Export Citation Format

Share Document