Effect of the zonal E × B plasma drift on the electron number density in the low-latitude ionospheric F region at high solar activity near the December solstice

2013 ◽  
Vol 53 (2) ◽  
pp. 188-197
Author(s):  
A. V. Pavlov ◽  
N. M. Pavlova
2018 ◽  
Vol 36 (2) ◽  
pp. 459-471 ◽  
Author(s):  
Amelia Naomi Onohara ◽  
Inez Staciarini Batista ◽  
Paulo Prado Batista

Abstract. The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E for eastward). This wave when combined with the migrating diurnal tide (DW1, W for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (∼  300–350 km). The four-peak structure remains up to higher ionosphere altitudes (∼  800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.


2006 ◽  
Vol 24 (10) ◽  
pp. 2553-2572 ◽  
Author(s):  
A. V. Pavlov

Abstract. A new three-dimensional, time-dependent theoretical model of the Earth's low and middle latitude ionosphere and plasmasphere has been developed, to take into account the effects of the zonal E×B plasma drift on the electron and ion number densities and temperatures, where E and B are the electric and geomagnetic fields, respectively. The model calculates the number densities of O+(4S), H+, NO+, O2+, N2+, O+(2D), O+(2P), O+(4P), and O+(2P*) ions, the electron density, the electron and ion temperatures using a combination of the Eulerian and Lagrangian approaches and an eccentric tilted dipole approximation for the geomagnetic field. The F2-layer peak density, NmF2, and peak altitude, hmF2, which were observed by 16 ionospheric sounders during the 12–13 April 1958 geomagnetically quiet time high solar activity period are compared with those from the model simulation. The reasonable agreement between the measured and modeled NmF2 and hmF2 requires the modified equatorial meridional E×B plasma drift given by the Scherliess and Fejer (1999) model and the modified NRLMSISE-00 atomic oxygen density. In agreement with the generally accepted assumption, the changes in NmF2 due to the zonal E×B plasma drift are found to be inessential by day, and the influence of the zonal E×B plasma drift on NmF2 and hmF2 is found to be negligible above about 25° and below about –26° geomagnetic latitude, by day and by night. Contrary to common belief, it is shown, for the first time, that the model, which does not take into account the zonal E×B plasma drift, underestimates night-time NmF2 up to the maximum factor of 2.3 at low geomagnetic latitudes, and this plasma transport in geomagnetic longitude is found to be important in the calculations of NmF2 and hmF2 by night from about –20° to about 20° geomagnetic latitude. The longitude dependence of the night-time low-latitude influence of the zonal E×B plasma drift on NmF2, which is found for the first time, is explained in terms of the longitudinal asymmetry in B (the eccentric magnetic dipole is displaced from the Earth's center and the Earth's eccentric tilted magnetic dipole moment is inclined with respect to the Earth's rotational axis) and the variations of the wind induced plasma drift and the meridional E×B plasma drift in geomagnetic longitude. The study of the influence of the zonal E×B plasma drift on the topside low-latitude electron density is presented for the first time.


2014 ◽  
Vol 32 (3) ◽  
pp. 207-222 ◽  
Author(s):  
V. Barabash ◽  
A. Osepian ◽  
P. Dalin

Abstract. Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO+ and O2+ primary ions (i.e. NO+.H2O and O2+.H2O, respectively), and the channel forming H+(H2O)n proton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl2+ proton hydrate layer upper border, comprising the NO+(H2O)n and O2+(H2O)n hydrated cluster ions, and the Cl1+ hydrate cluster layer lower border, comprising the H+(H2O)n pure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, αeff, and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS). The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.


2016 ◽  
Vol 31 (5) ◽  
pp. 1097-1104 ◽  
Author(s):  
Daniel A. Goncalves ◽  
Tina McSweeney ◽  
George L. Donati

Temperature, electron number density and robustness profiles of a N2 plasma contribute for more sensitive and accurate MIP OES determinations.


2003 ◽  
Vol 68 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Marija Raskovic ◽  
Ivanka Holclajtner-Antunovic ◽  
Mirjana Tripkovic ◽  
Dragan Markovic

The effect of the ethanol load on the discharge and analytical parameters of an argon stabilized U-shaped DC arc has been recorded. Measurements of the radial distribution of the apparent temperatures and the electron number density of the DC plasma showed that ethanol addition causes a decrease in both plasma parameters. The changes in the plasma characteristics, as well as in transport and atomisation processes of the analyte cause a general change in the spectral line intensities, which depends on the physical characteristics of the analyte and the quantity of ethanol loaded into the plasma. Improved detection limits were obtained for V and Mn when a 10%(v/v) water?ethanol solution was nebulized into the plasma.


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
M. Jamil ◽  
A. Rasheed ◽  
M. Amir ◽  
G. Abbas ◽  
Young-Dae Jung

The Jeans instability is examined in quantum dusty magnetoplasmas due to low-frequency magnetosonic perturbations. The fluid model consisting of the momentum balance equation for quantum plasmas, Poisson’s equation for the gravitational potential and Maxwell’s equations for electromagnetic magnetosonic perturbations is solved. The numerical analysis elaborates the significant contribution of magnetic field, electron number density and variable dust mass to the Jeans instability.


1992 ◽  
Vol 29 (5) ◽  
pp. 621-626 ◽  
Author(s):  
Robert B. Greendyke ◽  
Peter A. Gnoffo ◽  
R. Wes Lawrence

Sign in / Sign up

Export Citation Format

Share Document