vapour concentration
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 89-94
Author(s):  
H. Kampawong ◽  
W. Utto ◽  
R. Pruthtikul

Active food package incorporating an ethanol vapour-controlled release sachet has been known for its efficacies to delay microbial proliferation in fresh fruit and vegetable. High humidity inside the package could be utilized as a stimulus for conditional releases as a means to stabilize the sachet prior to being used. The present research was undertaken to investigate the effects of relative humidity on ethanol vapour release from the hydrophilic film-based sachet. The prototype 4-side sealed sachets were made of either ethylene vinyl acetate (EVA) or laminated film comprising EVA and Nylon/PE (designated as ENP). A gas chromatogram equipped with a flame-ionized detector (FID-GC) was employed to analyze ethanol vapour concentration levels released from both sachet types and accumulated in headspaces of sealed glass beakers having different relative humidity (RH) levels. For a given RH level, the concentrations in the headspaces containing the ENPbased sachets were lower than those containing the EVA-based sachets. Delays of ethanol vapour release up to 24 h were observed in the ENP-based sachet system, whilst these did not occur among EVA-based sachets. Both sachets could release ethanol vapour with faster rates and subsequently higher concentrations accumulated at the very high relative humidity level (90-99% RH), compared to lower RH levels (60-89% RH). However, the release rates and concentration levels accumulated in 60-75% RH were not different from those in 80-89% RH. Extents of water vapour uptake by films were relatively small when the films were kept at the lower RH levels, but these became exponentially increased when the RH levels were ≥90%RH. Experimental data on water vapour uptakes were well predicted by an exponential model (R2 0.92-0.99; and root mean square of errors (RMSE) 0.004-0.054). Overall, experiment findings indicate that the ENP film caused delayed ethanol vapour releases from the sachet. The relative humidity levels had significant effects on the releases from hydrophilic film-based sachets


2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


2021 ◽  
Author(s):  
Donato Summa ◽  
Paolo Di Girolamo ◽  
Noemi Franco ◽  
Benedetto De Rosa ◽  
Fabio Madonna ◽  
...  

<p>The exchange processes between the Earth and the atmosphere play a crucial role in the development of the Planetary Boundary Layer (PBL). Different remote sensing techniques can provide PBL measurement with different spatial and temporal resolutions. Vertical profiles of atmospheric thermodynamic variables, i.e.  temperature and humidity, or wind speed, clouds and aerosols can be used as proxy to retrieve PBL height from active and passive remote sensing instruments. The University of BASILicata ground-based Raman Lidar system (BASIL) was deployed in the North-Western Mediterranean basin in the Cévennes-Vivarais site (Candillargues, Southern France, Lat: 43°37' N, Long: 4° 4' E, Elev: 1 m) and operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 days and 19 intensive observation periods (IOPs). BASIL is capable to provide high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. This measurement capability makes BASIL a key instrument for the characterization of the water vapour concentration. BASIL makes use of a Nd:YAG laser source capable of emitting pulses at 355, 532 and 1064 nm, with a single pulse energy at 355nm of 500 mJ [1] .In the presented research effort, water vapour concentration was  computed and used to determine the PBL height. [2]. A dynamic index  included in the European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (CAPE, Friction velocity, etc.) is also considered and compared with BASIL resutls. ERA5 provides hourly data on regular latitude-longitude grids at 0.25° x 0.25° resolution at 37 pressure levels [3]. ERA5 is publicly available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu).  In order to properly carry out the comparison, the nearest ERA5 grid point to the lidar site has been considered assuming the representativeness uncertainty due to the use of the nearest grid-point comparable with other methods (e.g. kriging, bilinear interpolation, etc.). More results from this  measurement  effort will  be reported and discussed at the Conference.</p><p><strong>Reference</strong></p><p>[1] Di Girolamo, Paolo, De Rosa, Benedetto, Flamant, Cyrille, Summa, Donato, Bousquet, Olivier, Chazette, Patrick, Totems, Julien, Cacciani, Marco. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY, ISSN: 2662-1495, doi: 10.1007/s42865-020-00008-3</p><p>[2] D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches  Atmos. Meas. Tech., 6, 3515–3525, 2013 www.atmos-meas-tech.net/6/3515/2013/doi:10.5194/amt-6-3515-2013</p><p>[3] Hersbach et al. The ERA5 global reanalysis Hans  https://doi.org/10.1002/qj.3803[3]</p>


2021 ◽  
Author(s):  
Shujiro Komiya ◽  
Fumiyoshi Kondo ◽  
Heiko Moossen ◽  
Thomas Seifert ◽  
Uwe Schultz ◽  
...  

<p>Commercially available laser-based spectrometers permit continuous field measurements of water vapour (H<sub>2</sub>O) stable isotope compositions, yet continuous observations in the Amazon, a region that significantly influences atmospheric hydrological cycles on regional to global scales, are largely missing. In order to achieve accurate on-site observations in such conditions, these instruments will require regular on-site calibration, including for H<sub>2</sub>O concentration dependence ([H<sub>2</sub>O]-dependence) of isotopic accuracy.</p><p>With the aim of conducting accurate continuous δ<sup>18</sup>O and δ<sup>2</sup>H on-site observation in the Amazon rainforest, we conducted a laboratory experiment to investigate the performance and determine the optimal [H<sub>2</sub>O]-dependence calibration strategy for two commercial cavity-ring down (CRDS) analysers (L1102i and L2130i models, Picarro, Inc., USA), coupled to our custom-built automated calibration unit. We particularly focused on the rarely investigated performance of the instruments at atmospheric H<sub>2</sub>O contents above 35,000 ppm, a value regularly reached at our site.</p><p>The later analyser model (L2130i) had better precision and accuracy of δ<sup>18</sup>O and δ<sup>2</sup>H measurements with a less pronounced [H<sub>2</sub>O]-dependence compared to the older L1102i. The [H<sub>2</sub>O]-dependence calibration uncertainties did not significantly change with calibration intervals from 28 h up to 196 h, suggesting that one [H<sub>2</sub>O]-dependence calibration per week for the L2130i and L1102i analysers is enough. This study shows that with both CRDS analysers, correctly calibrated, we should be able to discriminate natural diel, seasonal and interannual signals of stable water vapour isotopes in a tropical rainforest environment.</p><p> </p>


2021 ◽  
Vol 9 (1) ◽  
pp. 61-61
Author(s):  
Aljazi AlRashid ◽  
Andrew Norris
Keyword(s):  

2020 ◽  
Author(s):  
Shujiro Komiya ◽  
Fumiyoshi Kondo ◽  
Heiko Moossen ◽  
Thomas Seifert ◽  
Uwe Schultz ◽  
...  

Abstract. The recent development and improvement of commercial laser-based spectrometers have expanded in situ continuous observations of water vapour (H2O) stable isotope ratios (e.g., δ18O, δ2H, etc.) in a variety of sites worldwide. However, we still lack continuous observations in the Amazon, a region that significantly influences atmospheric and hydrological cycles on local to global scales. In order to achieve accurate on-site observations, commercial water isotope analysers require regular in situ calibration, including H2O concentration dependence ([H2O]-dependence) of isotopic accuracy. Past studies have assessed [H2O]-dependence for air with H2O concentrations up to 35,000 ppm, a value that is frequently surpassed in tropical rainforest settings like the central Amazon where we plan continuous observations. Here we investigated the performance of two commercial analysers (L1102i and L2130i models, Picarro, Inc., USA) for measuring δ18O and δ2H in atmospheric moisture at four different H2O levels from 21,500 to 41,000 ppm. These H2O levels were created by a custom-built calibration unit designed for regular in situ calibration. Measurements on the newer analyser model (L2130i) had better precision for δ18O and δ2H and demonstrated less influence of H2O concentration on the measurement accuracy at each moisture level compared to the older L1102i. Based on our findings, we identified the most appropriate calibration strategy for [H2O]-dependence, adapted to our calibration system. The best strategy required using two pairs of a two-point calibration with four different H2O concentration levels. The smallest uncertainties in calibrating [H2O]-dependence of isotopic accuracy of the two analysers were achieved using a linear-surface fitting method and a 28 h calibration interval, except for the δ18O accuracy of the L1102i analyser for which the cubic fitting method gave best results. The uncertainties in [H2O]-dependence calibration did not show any significant difference using calibration intervals from 28 h up to 196 h; this suggested that one [H2O]-dependence calibration per week for the L2130i and L1102i analysers is sufficient.


Sign in / Sign up

Export Citation Format

Share Document