Kinetics of Radical Chain Polymerization: 1. Time-Dependent Distributions of Macroradicals and Oligomers

2019 ◽  
Vol 53 (4) ◽  
pp. 265-275 ◽  
Author(s):  
I. P. Kim ◽  
E. I. Kats ◽  
V.A. Benderskii
1968 ◽  
Vol 46 (14) ◽  
pp. 2427-2433 ◽  
Author(s):  
M. L. Boyd ◽  
M. H. Back

Mixtures of ethane and ethylene have been pyrolyzed in the temperature range 563–600 °C and at pressures from 30–60 cm. The products were similar to those obtained from the pyrolysis of ethylene by itself, described m Part I, with a marked increase in the yields of the saturated products. The initial rates of product formation and the dependence of these rates on the concentration of ethane suggest that the initiation step is the same as that proposed in the pyrolysis of ethylene alone, viz.[Formula: see text]and that the reaction[Formula: see text]is not an important source of radicals. A simplified mechanism is outlined to account for the main effects of ethane on the free radical chain polymerization.


1968 ◽  
Vol 46 (14) ◽  
pp. 2415-2426 ◽  
Author(s):  
M. L. Boyd ◽  
T-M. Wu ◽  
M. H. Back

The pyrolysis of ethylene has been studied in the temperature range 500–600 °C and the pressure range 15–60 cm. The main products were ethane, propylene, butene, butadiene, and a polymer of molecular weight corresponding to C8 or higher. Small amounts of methane, butane, unsaturated C5, unsaturated C6, and benzene were also measured. Of the main products, propylene, butene, and butadiene showed an induction period, as long as several minutes at the lowest temperature. The order with respect to ethylene of ethane, propylene, and butene was close to two and the activation energy of the rates was approximately 40 kcal/mole. The results have been interpreted in terms of a free radical chain polymerization. It is suggested that the polymer formed is unstable and decomposes to yield the products for which an induction period was observed.


2015 ◽  
Vol 3 (1) ◽  
pp. 144-150 ◽  
Author(s):  
J. Nordmann ◽  
S. Buczka ◽  
B. Voss ◽  
M. Haase ◽  
K. Mummenhoff

We have investigated the kinetics of the uptake and the translocation of nanoparticles of different size in plants.


1988 ◽  
Vol 8 (5) ◽  
pp. 1957-1969 ◽  
Author(s):  
R A Shapiro ◽  
D Herrick ◽  
R E Manrow ◽  
D Blinder ◽  
A Jacobson

As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.


2018 ◽  
Vol 46 (22) ◽  
pp. e130-e130 ◽  
Author(s):  
Nadin Haase ◽  
Wolf Holtkamp ◽  
Reinhard Lipowsky ◽  
Marina Rodnina ◽  
Sophia Rudorf

Sign in / Sign up

Export Citation Format

Share Document