Free convection and heat transfer in a near-supercritical fluid in a horizontal square cavity with lateral heating

2013 ◽  
Vol 51 (5) ◽  
pp. 652-664 ◽  
Author(s):  
V. I. Artemov ◽  
A. F. Polyakov
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Mohammed A. Almeshaal ◽  
Yahya Ali Rothan ◽  
Khalil Hajlaoui

Purpose The purpose of this paper is to examine numerically the magnetohydrodynamic (MHD) free convection and thermal radiation heat transfer of single walled carbon nanotubes-water nanofluid within T-inverted shaped corrugated cavity comprising porous media including uniform heat source/sink for solar energy power plants applications. Design/methodology/approach The two-dimensional numerical simulation is performed by drawing on Comsol Multiphysics program, based on the finite element process. Findings The important results obtained show that increasing numbers of Rayleigh and Darcy and the parameter of radiation enhance the flow of convection heat. Furthermore, by increasing the corrugation height, the convection flow increases, but it decreases with the multiplication of the corrugation height. The use of a flat cavity provides better output than a corrugated cavity. Originality/value The role of surface corrugation parameters on the efficiency of free convection and heat transfer of thermal radiation within the porous media containing the T-inverted corrugated cavity including uniform heat source/sink under the impact of Lorentz forces has never been explored. A contrast is also established between a flat cavity and a corrugated one.


2017 ◽  
Vol 29 (4) ◽  
pp. 275-295 ◽  
Author(s):  
Bi-Li Deng ◽  
Yuki Kanda ◽  
Lin Chen ◽  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
...  

2005 ◽  
Vol 16 (1-4) ◽  
pp. 164-169 ◽  
Author(s):  
V. M. Emelianov ◽  
A. K. Lednev ◽  
V. I. Polezhaev ◽  
A. I. Ivanov ◽  
G. F. Putin ◽  
...  

Volume 1 ◽  
2004 ◽  
Author(s):  
M. Belkadi ◽  
A. Azzi ◽  
O. Imine ◽  
L. Adjlout ◽  
M. Aounallah ◽  
...  

In the present investigation, a numerical study of the effect of the hot wavy wall with partial partitions on free convection in an inclined square cavity, differentially heated, was undertaken. This problem is solved by using the partial differential equations which are the equation of mass, momentum, and energy. The tests were performed for different inclination angles, partition lenghts and Rayleigh numbers while the Prandtl number was kept constant. A configuration with three undulations and three partitions has been tested. The results obtained show that the hot wall geometry with partions affects the heat transfer rate in the cavity. The mean Nusselt number decreases notably compared with the heat transfer in the square undulated cavity without partitions.


2017 ◽  
Vol 27 (10) ◽  
pp. 2318-2332 ◽  
Author(s):  
Ioan Pop ◽  
Mikhail Sheremet

Purpose The main purpose of this numerical work is to study free convection of Casson fluid in a square differentially heated cavity taking into account the effects of thermal radiation and viscous dissipation. Design/methodology/approach The cavity is heated from the left vertical wall and cooled from the right vertical wall while horizontal walls are insulated. The governing partial differential equations invoking Rosseland approximation for thermal radiation with corresponding boundary conditions have been solved by finite difference method of the second-order accuracy using dimensionless variables stream function, vorticity and temperature. The governing parameters are Rayleigh number (Ra = 105), Prandtl number (Pr = 0.1, 0.7, 7.0), Casson parameter (γ = 0.1-5.0), radiation parameter (Rd = 0-10), Eckert number (Ec = 0-1.0). Findings It is found that an increase in Casson parameter leads to the heat transfer enhancement and fluid flow intensification. While a growth of Eckert number illustrates the heat transfer suppression. Originality/value The originality of this work is to analyze for the first-time natural convective fluid flow and heat transfer of a Casson fluid within a differentially heated square cavity under the effects of thermal radiation and viscous dissipation. The results would benefit scientists and engineers to become familiar with the flow behavior of such non-Newtonian fluids, and the way to predict the properties of this flow for possibility of using this specific fluid in various engineering and industrial processes, such as chyme movement in intestine, blood flows, lubrication processes with grease and heavy oils, glass blowing, electronic chips, food stuff, slurries, etc.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Mostafa Varmazyar ◽  
Majid Bazargan

During the last decade, a number of numerical computations based on the finite volume approach have been reported, studying various aspects of heat transfer near the critical point. In this paper, a lattice Boltzmann method (LBM) has been developed to simulate laminar free convection heat transfer to a supercritical fluid in a square enclosure. The LBM is an ideal mesoscopic approach to solve nonlinear macroscopic conservation equations due to its simplicity and capability of parallelization. The lattice Boltzmann equation (LBE) represents the minimal form of the Boltzmann kinetic equation. The LBE is a very elegant and simple equation, for a discrete density distribution function, and is the basis of the LBM. For the mass and momentum equations, a LBM is used while the heat equation is solved numerically by a finite volume scheme. In this study, interparticle forces are taken into account for nonideal gases in order to simulate the velocity profile more accurately. The laminar free convection cavity flow has been extensively used as a benchmark test to evaluate the accuracy of the numerical code. It is found that the numerical results of this study are in good agreement with the experimental and numerical results reported in the literature. The results of the LBM-FVM (finite volume method) combination are found to be in excellent agreement with the FVM-FVM combination for the Navier–Stokes and heat transfer equations.


2021 ◽  
Vol 53 (4) ◽  
pp. 210409
Author(s):  
Atheer Saad Hashim

A numerical simulation was conducted to study the free convection of Ag/H2O nanofluid between a square cavity with cold walls and an egg shaped cylinder with a hot wall. Utilizing the egg equation, dimensionless governing equations were solved using the Galerkin Finite Element Method (GFEM). In this work, several parameters were studied, i.e. Rayleigh number (103 ≤ Ra ≤ 106), volume fraction (0 ≤ φ ≤ 0.05), position (-0.2 ≤ Y ≤ 0.2), and orientation angle (-90° ≤ γ ≤ 90°). The numerical results are presented as streamline contours, isotherm contours, and local and average Nusselt numbers. Moreover, the results were used to analyze the fluids’ structure, temperature distribution, and heat transfer rate. The numerical results confirmed that the stream intensity value increased with an increase of the Rayleigh number as well as the movement of the cylinder towards the bottom wall for all values of the orientation angle. Variation of the vertical position of the cylinder inside the cavity had a noticeable effect on , which increased by 50% at γ = -90°, and by 58% at γ = -45°. However, at Y = -0.2,  increased by 58% at γ = -45° and decreased by 7% at γ = -90°. The highest heat transfer rate was obtained at high Rayleigh number (Ra = 106), volume fraction (φ = 0.05), negative position (Y = -0.2), and the highest positive orientation angle (γ = 90°).


Sign in / Sign up

Export Citation Format

Share Document