Some phenomena during electric discharge ignition in long tubes

2013 ◽  
Vol 51 (4) ◽  
pp. 431-434 ◽  
Author(s):  
A. V. Nedospasov
Author(s):  
A. F. Gaysin ◽  
F. M. Gaysin ◽  
L. N. Bagautdinova ◽  
A. A. Khafizov ◽  
R. I. Valiev ◽  
...  

THE PURPOSE. Comprehensive study of the effect of direct current electric discharge plasma in a gas-liquid medium of inorganic mixtures in order to obtain gaseous hydrogen. Obtain volt-ampere, volt-second and ampere-second characteristics of the discharge at various concentrations of electrolyte. Study the process of electrolysis, breakdown, discharge ignition and discharge flow in a dielectric tube at a constant current. METHODS. To solve this problem, experimental studies were carried out on a model installation, which consists of a power supply system, a discharge chamber, equipment for monitoring and controlling the operation of the installation and measuring the characteristics of an electric discharge. To analyze the stability of the discharge, the time dependences of the voltage ripple and the discharge current were obtained. RESULTS. Experimental studies were carried out between the electrolytic cathode and the electrolytic anode at constant current and at atmospheric pressure with the following parameters: discharge voltage U = 0.1-1.5 kV, discharge current I = 0.02-2.3 A, interelectrode distance l = 100 mm , 1%, 3% and 5% solutions of sodium chloride in tap water were used as electrolytes. CONCLUSION. It is shown that electrical breakdown and ignition of a discharge that is stable in time depends on the conductivity of the gas-liquid medium of the electrolyte. The nature of the current-voltage characteristics depends on the random processes occurring in the gas-liquid medium, which is associated with numerous breakdowns occurring in the gas-liquid medium of the electrolyte, combustion and attenuation of microdischarges, the appearance of bubbles, and the movement of the electrolyte inside the dielectric tube. It is shown that the generation of hydrogen and hydrogen-containing components can occur both at the stage of electrolysis and during discharge combustion. A feature of this method is that electrical discharges in the tube increase the release of hydrogen. In this installation, inorganic and organic liquids of a certain composition and concentration can be used. The results of experimental studies made it possible to develop and create a small-sized installation for producing gaseous hydrogen. Tests have shown that a small-sized plant can be taken as the basis for a industrial plant for the production of hydrogen gas.


The thermal theory of the mechanism of the ignition of an explosive gaseous mixture by an electric discharge was put forward by Taylor-Jones, Morgan and Wheeler, in terms stating that “the ignition of a gaseous mixture depends primarily . . . on the heating of a sufficient volume to a sufficient tempera­ture.” The electrical ignition of gases has been studied by R. V. Wheeler, Taylor- Jones, Holm, and J. D. Morgan, all of whom have put forward facts pur­porting to establish a purely thermal theory which, it is claimed, explains the mechanism of ignition as a whole, whether by electric discharges or by any other means.


2013 ◽  
Vol 133 (4) ◽  
pp. 205-210
Author(s):  
Norihito Oshikawa ◽  
Tatsuya Tokunaga ◽  
Kazufumi Honda ◽  
Takuma Miyake ◽  
Tatsuya Sakoda ◽  
...  

Author(s):  
Юрій Юрійович Свида ◽  
Марія Іллівна Суховія ◽  
Микола Олексійович Маргітич ◽  
Мирослав Іванович Шафраньош ◽  
Іван Іванович Шафраньош

2020 ◽  
Vol 11 (11) ◽  
pp. 17-27
Author(s):  
Vadim V. VOEVODIN ◽  
◽  
Marina V. SOKOLOVA ◽  
Viktor R. SOLOV’YEV ◽  
Nikolay Yu. LYSOV ◽  
...  

The results from an experimental study of impulse surface discharge occurring in an electrode system containing a dielectric plate are presented. On one of its sides, the plate had a corona-producing electrode made of 50 mm thick copper foil grounded through a current shunt for measuring the discharge current. On its other side, the plate had a high-voltage electrode, to which the voltage from a pulse generator was applied. The article presents the results from measurements of the initial voltage and the sizes of the surface discharge area in air when applying single voltage pulses with different pulse front steepness in the range 0,1–3,4 kV/ms and amplitude in the range 7–15 kV. The measurements were carried out for different dielectric barrier materials with the e values from 2 to 35. The dielectric barrier thickness was 0,9–1,8 mm. The study results have shown that the initial surface discharge ignition voltage depends essentially on the voltage pulse parameters, whereas the barrier characteristics have a weaker effect on this voltage. It has been determined that the discharge has different discharge zone length and different structure depending on the dielectric barrier properties and applied voltage parameters. The streamer zone sizes decrease with increasing the barrier material e value at the same voltage pulse steepness and increase with increasing the steepness for each barrier material. The data obtained for a wide range of external conditions can be used in numerical modeling of discharge.


Sign in / Sign up

Export Citation Format

Share Document