Numerical investigation of heat transfer enhancement in a square ventilated cavity with discrete heat sources using nanofluid

2017 ◽  
Vol 55 (3) ◽  
pp. 426-433
Author(s):  
H. Moumni ◽  
H. Welhezi ◽  
E. Sediki
Author(s):  
Esam M. Alawadhi

Numerical method based on the finite element method is utilized to study the heat transfer enhancement from discrete heat sources using a wavy channel. The considered geometry consists of a channel formed by two wavy plates with six discrete heat sources placed on upper and lower walls. The effect of the Reynolds number, Prandtl number, waviness of the wavy wall, and the location of the heat sources on the heat transfer out of the heat sources is investigated. The result indicates that the wavy channel significantly enhances the heat flow out of the heat sources, and heat sources located at the minimum cross section areas of the channel shows the best performance. The heat transfer enhancement can reaches as high as 120% for high Reynolds numbers and waviness of the channel.


1995 ◽  
Vol 117 (1) ◽  
pp. 46-51 ◽  
Author(s):  
H. A. Hadim ◽  
A. Bethancourt

A numerical study was performed to analyze steady laminar forced convection in a channel partially filled with a fluid-saturated porous medium and containing discrete heat sources on the bottom wall. Hydrodynamic and heat transfer results are reported for the configuration in which the porous layers are located above the heat sources while the rest of the channel is nonporous. The flow in the porous medium was modeled using the Brinkman-Forchheimer extended Darcy model. Parametric studies were conducted to evaluate the effects of variable heat source spacing and heat source width on heat transfer enhancement and pressure drop in the channel. The results indicate that when the heat source spacing was increased within the range considered, there was a negligible change in heat transfer enhancement while the pressure drop decreased significantly. When the heat source width was decreased, there was a moderate increase in heat transfer enhancement and a significant decrease in pressure drop.


Sign in / Sign up

Export Citation Format

Share Document