Dependence of the mechanism of solid particle drift in a nonlinear wave field on the time constant and wave front passage time

2011 ◽  
Vol 52 (4) ◽  
pp. 590-598
Author(s):  
A. L. Tukmakov
2001 ◽  
Vol 427 ◽  
pp. 107-129 ◽  
Author(s):  
L. SHEMER ◽  
HAIYING JIAO ◽  
E. KIT ◽  
Y. AGNON

Evolution of a nonlinear wave field along a laboratory tank is studied experimentally and numerically. The numerical study is based on the Zakharov nonlinear equation, which is modified to describe slow spatial evolution of unidirectional waves as they move along the tank. Groups with various initial shapes, amplitudes and spectral contents are studied. It is demonstrated that the applied theoretical model, which does not impose any constraints on the spectral width, is capable of describing accurately, both qualitatively and quantitatively, the slow spatial variation of the group envelopes. The theoretical model also describes accurately the variation along the tank of the spectral shapes, including free wave components and the bound waves.


2013 ◽  
Vol 720 ◽  
pp. 357-392 ◽  
Author(s):  
Wenting Xiao ◽  
Yuming Liu ◽  
Guangyu Wu ◽  
Dick K. P. Yue

AbstractWe study the occurrence and dynamics of rogue waves in three-dimensional deep water using phase-resolved numerical simulations based on a high-order spectral (HOS) method. We obtain a large ensemble of nonlinear wave-field simulations ($M= 3$ in HOS method), initialized by spectral parameters over a broad range, from which nonlinear wave statistics and rogue wave occurrence are investigated. The HOS results are compared to those from the broad-band modified nonlinear Schrödinger (BMNLS) equations. Our results show that for (initially) narrow-band and narrow directional spreading wave fields, modulational instability develops, resulting in non-Gaussian statistics and a probability of rogue wave occurrence that is an order of magnitude higher than linear theory prediction. For longer times, the evolution becomes quasi-stationary with non-Gaussian statistics, a result not predicted by the BMNLS equations (without consideration of dissipation). When waves spread broadly in frequency and direction, the modulational instability effect is reduced, and the statistics and rogue wave probability are qualitatively similar to those from linear theory. To account for the effects of directional spreading on modulational instability, we propose a new modified Benjamin–Feir index for effectively predicting rogue wave occurrence in directional seas. For short-crested seas, the probability of rogue waves based on number frequency is imprecise and problematic. We introduce an area-based probability, which is well defined and convergent for all directional spreading. Based on a large catalogue of simulated rogue wave events, we analyse their geometry using proper orthogonal decomposition (POD). We find that rogue wave profiles containing a single wave can generally be described by a small number of POD modes.


1985 ◽  
Vol 12 (4) ◽  
pp. 363-368 ◽  
Author(s):  
Norden E. Huang ◽  
Chi-Chao Tung ◽  
Ronald J. Lai

Sign in / Sign up

Export Citation Format

Share Document