particle drift
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Bruno C. Vieira ◽  
Maxwel Coura Oliveira ◽  
Guilherme Sousa Alves ◽  
Jeffrey A. Golus ◽  
Kasey Schroeder ◽  
...  
Keyword(s):  

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1190-1225
Author(s):  
Marius S. Potgieter ◽  
O. P. M. Aslam ◽  
Driaan Bisschoff ◽  
Donald Ngobeni

Global modulation studies with comprehensive numerical models contribute meaningfully to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons and anti-protons are investigated to establish how the ratio of their intensity, and with respect to electrons and protons, are changing with solar activity. This includes the polarity reversal of the solar magnetic field which creates a 22-year modulation cycle. Modeling illustrates how they are modulated over time and the particle drift they experience which is significant at lower kinetic energy. The VLIS for anti-protons has a peculiar spectral shape in contrast to protons so that the total modulation of anti-protons is awkwardly different to that for protons. We find that the proton-to-anti-proton ratio between 1–2 GeV may change by a factor of 1.5 over a solar cycle and that the intensity for anti-protons may decrease by a factor of ~2 at 100 MeV during this cycle. A composition is presented of VLIS for protons, deuteron, helium isotopes, electrons, and particularly for positrons and anti-protons. Gaining knowledge of their respective 11 and 22 year modulation is useful to interpret observations of low-energy anti-nuclei at the Earth as tests of dark matter annihilation.


2021 ◽  
pp. 1-10
Author(s):  
Sarah E. Dixon ◽  
Jerri L. Henry ◽  
Dean S. Volenberg ◽  
Reid J. Smeda

The increasing adoption of dicamba-tolerant soybean (Glycine max) increases the potential exposure of wine grape (Vitis sp.) to dicamba, to which off-target injury may occur via particle drift or vapor drift. In Missouri, at one site in 2017 and at two sites in 2018, research of production vineyards focused on the effects of dicamba on hybrid ‘Vidal blanc’ grapevines. During flowering and early fruit set, bearing grapevines were exposed to low rates of dicamba delivered as a spray solution of 81 or 161 ppm or by vapor from treated soil. Grapevines were highly sensitive to dicamba, and visible symptoms extended throughout the growing season. The severity of dicamba injury (leaf cupping and feathering) was similar at two of three site-years, with greater injury related to particle drift than to vapor drift of dicamba. Early-season injury resulted in dicamba impacting the total soluble solids (TSS) content of grape berries and grape yield. At harvest during two site-years, yield reductions of up to 45% were associated with dicamba exposure at flowering. Across all site-years, no significant effects of dicamba drift were observed in the TSS content of berries during veraison in August, as measured by refractometer. However, the final TSS content of berries at harvest in September was reduced by 12% from dicamba as particle drift. At a minimum detection level of 10 ng⋅mL−1, high-performance liquid chromatography mass spectrometry identified dicamba at levels up to 33 ng⋅mL−1 in grape must over all site-years. Unexpectedly, this was up to 125 d after grapevine exposure despite low levels of visible dicamba symptomology.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Monia Makhoul ◽  
Philippe Beltrame

AbstractThis paper analyzes the possibility of obtaining the selective transport of microparticles suspended in air in a microgravity environment through modulated channels without net displacement of air. Using numerical simulation and bifurcation analysis tools, we show the existence of intermittent particle drift under the Stokes assumption of the fluid flow. The particle transport can be selective and the direction of transport is controlled only by the kind of pumping used. The selective transport is interpreted as a deterministic ratchet effect due to spatial variations in the flow and the particle drag. This ratchet phenomenon could be applied to the selective transport of metal particles during the short duration of microgravity experiments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Natacha Nikolic ◽  
Iratxe Montes ◽  
Maxime Lalire ◽  
Alexis Puech ◽  
Nathalie Bodin ◽  
...  

Abstract Albacore tuna (Thunnus alalunga) is an important target of tuna fisheries in the Atlantic and Indian Oceans. The commercial catch of albacore is the highest globally among all temperate tuna species, contributing around 6% in weight to global tuna catches over the last decade. The accurate assessment and management of this heavily exploited resource requires a robust understanding of the species’ biology and of the pattern of connectivity among oceanic regions, yet Indian Ocean albacore population dynamics remain poorly understood and its level of connectivity with the Atlantic Ocean population is uncertain. We analysed morphometrics and genetics of albacore (n = 1,874) in the southwest Indian (SWIO) and southeast Atlantic (SEAO) Oceans to investigate the connectivity and population structure. Furthermore, we examined the species’ dispersal potential by modelling particle drift through major oceanographic features. Males appear larger than females, except in South African waters, yet the length–weight relationship only showed significant male–female difference in one region (east of Madagascar and Reunion waters). The present study produced a genetic differentiation between the southeast Atlantic and southwest Indian Oceans, supporting their demographic independence. The particle drift models suggested dispersal potential of early life stages from SWIO to SEAO and adult or sub-adult migration from SEAO to SWIO.


2020 ◽  
Vol 17 (11) ◽  
pp. 4125-4140
Author(s):  
Freddy A. Arce ◽  
Nico Setiawan ◽  
Heather R. Campbell ◽  
Xingyu Lu ◽  
Matthew J. Nethercott ◽  
...  

2020 ◽  
Vol 34 (4) ◽  
pp. 520-527
Author(s):  
Bruno C. Vieira ◽  
Thomas R. Butts ◽  
Andre O. Rodrigues ◽  
Jerome J. Schleier ◽  
Bradley K. Fritz ◽  
...  

AbstractThe introduction of 2,4-D–resistant soybean and cotton provided growers a new POST active ingredient to include in weed management programs. The technology raises concerns regarding potential 2,4-D off-target movement to sensitive vegetation, and spray droplet size is the primary management factor focused on to reduce spray particle drift. The objective of this study was to investigate the droplet size distribution, droplet velocity, and particle drift potential of glyphosate plus 2,4-D choline pre-mixture (Enlist Duo®) applications with two commonly used venturi nozzles in a low-speed wind tunnel. Applications with the TDXL11004 nozzle had larger DV0.1 (291 µm), DV0.5 (544 µm), and DV0.9 (825 µm) values compared with the AIXR11004 nozzle (250, 464, and 709 µm, respectively), and slower average droplet velocity (8.1 m s−1) compared with the AIXR11004 nozzle (9.1 m s−1). Nozzle type had no influence on drift deposition (P = 0.65), drift coverage (P = 0.84), and soybean biomass reduction (P = 0.76). Although the TDXL11004 nozzle had larger spray droplet size, the slower spray droplet velocity could have influenced the nozzle particle drift potential. As a result, both TDXL11004 and AIXR11004 nozzles had similar spray drift potential. Further studies are necessary to understand the impact of droplet velocity on drift potential at field scale and test how different tank solutions, sprayer configurations, and environmental conditions could influence the droplet size and velocity dynamics and consequent drift potential in pesticide applications.


2019 ◽  
Vol 26 (10) ◽  
pp. 102102 ◽  
Author(s):  
Tingting Wu ◽  
Yueqiang Liu ◽  
Yue Liu ◽  
Lina Zhou ◽  
Hongda He

Sign in / Sign up

Export Citation Format

Share Document