On a magnetohydrodynamic flow of the Casson fluid with partial slip and thermal radiation

2016 ◽  
Vol 57 (5) ◽  
pp. 916-924 ◽  
Author(s):  
S. A. Shehzad ◽  
T. Hayat ◽  
A. Alsaedi ◽  
M. A. Meraj
Author(s):  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
Laiba Shabbir ◽  
Adila Saleem ◽  
M. Ijaz Khan ◽  
...  

In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source of the flow is metachronal waves which are caused by the back and forth motion of cilia attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson fluid experience the effects of transverse magnetic fields incorporated with the slippery walls of the channel. Thermal effects are examined by taking Roseland’s approximation and application of thermal radiation into account. The heat transfer through the multiphase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow. Since the main objective of the current study is to analyze heat transfer through an MHD multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is driven by cilia motion results in nonlinear and coupled differential equations which are transformed and subsequently, integrated subject to slip boundary conditions. A closed-form solution is eventually obtained form that effectively describes the flow dynamics of multiphase flow. A comprehensive parametric study is carried out which highlights the significant contribution of pertinent parameters of the heat transfer of Casson multiphase flow. It is inferred that lubricated walls and magnetic fields hamper the movement of multiphase flow. It is noted that a sufficient amount of additional thermal energy moves into the system, due to the Eckert number and Prandtl number. While thermal radiation acts differently by expunging the heat transfer. Moreover, Casson multiphase flow is a more suitable source of heat transfer than Newtonian multiphase flow.


2021 ◽  
Vol 10 (4) ◽  
pp. 478-490
Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The work of steady hydromagnetic stream of Casson liquid in a micro-channel constructed by two indefinite vertical proportionate walls in the appearance of thermal radiation is presented in this article. The effect of an imposed magnetic domain appearing scheduled to movement of an electrically administrating liquid is adopted into account. The exact solutions of the liquid velocity, imposed magnetic domain, and temperature domain have been obtained. Also, the analytical expressions for the skin-friction coefficient and imposed current density are obtained. The basic aspiration of this article is to reinvestigate the supremacy of pertinent physical constraints like magnetic Prandtl number, injection/suction parameter, Hartmann number, thermal radiation parameter, rarefaction parameter, wall ambient temperature difference ratio, and liquid wall interaction parameter over the imposed magnetic field and velocity of the liquid. Lorentz force which is obtained from magnetic field has a propensity to decline the motion of liquid and imposed magnetic field. The imposed current density rises with an enhancement in the hydromagnetic Prandtl number. This study is applied in the machines like transformers, generators, and motors work on the principle of electromagnetic induction. Results are compared with the literature in the limiting case.


Sign in / Sign up

Export Citation Format

Share Document