tRNA Wobble Base Modifications and Boric Acid Resistance in Yeast: Boron-Resistant Deletion Mutants Induce the General Amino Acid Control Mechanism and Activate Boron Efflux

2020 ◽  
Vol 54 (3) ◽  
pp. 396-401
Author(s):  
İ. Uluisik ◽  
H. C. Karakaya ◽  
A. Koc
PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27772 ◽  
Author(s):  
Irem Uluisik ◽  
Alaattin Kaya ◽  
Dmitri E. Fomenko ◽  
Huseyin C. Karakaya ◽  
Bradley A. Carlson ◽  
...  

1987 ◽  
Vol 15 (13) ◽  
pp. 5261-5273 ◽  
Author(s):  
Kemin Zhou ◽  
Paula R.G. Brisco ◽  
Ari E. Hinkkanen ◽  
Gunter B. Kohlhaw

2010 ◽  
Vol 285 (22) ◽  
pp. 16893-16911 ◽  
Author(s):  
Kirk A. Staschke ◽  
Souvik Dey ◽  
John M. Zaborske ◽  
Lakshmi Reddy Palam ◽  
Jeanette N. McClintick ◽  
...  

Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 984-986 ◽  
Author(s):  
W. Xiao ◽  
G. H. Rank

The yeast ILV2 gene encodes acetolactate synthase, the first enzyme in the biosynthesis of isoleucine and valine. Its multiple regulation has precluded the clear demonstration of whether ILV2 is under general amino acid control. Nonderepressible gcn4 strains were used as recipients for transformation with a YCp plasmid carrying GCN4. Parental gcn4 cells and their isogenic GCN4 transformants were evaluated for ALS derepression following induced amino acid starvation. GCN4 cells showed 1.5-to 1.7-fold derepression but no derepression was observed in isogenic control gcn4 strains. A similar depression of ILV2 mRNA was also observed. Genetic evidence for general amino acid control was the gcn4 suppression of high level resistance to sulfometuron methyl by the SMR1-410 allele of ILV2.Key words: Saccharomyces cerevisiae, ILV2 gene, general amino acid control, multiple regulators.


1985 ◽  
Vol 5 (11) ◽  
pp. 3139-3148 ◽  
Author(s):  
M Crabeel ◽  
R Huygen ◽  
K Verschueren ◽  
F Messenguy ◽  
K Tinel ◽  
...  

To characterize further the regulatory mechanism modulating the expression of the Saccharomyces cerevisiae ARG3 gene, i.e., the specific repression by arginine and the general amino acid control, we analyzed by deletion the region upstream of that gene, determined the nucleotide sequence of operator-constitutive-like mutations affecting the specific regulation, and examined the behavior of an ARG3-galK fusion engineered at the initiating codon of ARG3. Similarly to what was observed in previous studies on the HIS3 and HIS4 genes, our data show that the general regulation acts as a positive control and that a sequence containing the nucleotide TGACTC, between positions -364 and -282 upstream of the transcription start, functions as a regulatory target site. This sequence contains the most proximal of the two TGACTC boxes identified in front of ARG3. While the general control appears to modulate transcription efficiency, the specific repression by arginine displays a posttranscriptional component (F. Messenguy and E. Dubois, Mol. Gen. Genet. 189:148-156, 1983). Our deletion and gene fusion analyses confirm that the specific and general controls operate independently of each other and assign the site responsible for arginine-specific repression to between positions -170 and +22. In keeping with this assignment, the two operator-constitutive-like mutations were localized at positions -80 and -46, respectively, and thus in a region which is not transcribed. We discuss a hypothesis accounting for the involvement of untranscribed DNA in a posttranscriptional control.


2020 ◽  
Author(s):  
Thareendra De Zoysa ◽  
Eric M. Phizicky

AbstractAll tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5’-3’ exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 of tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the temperature sensitivity of trm8Δ mutants was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA decay and enhanced temperature sensitivity. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.Author SummarytRNA modifications are highly conserved and their lack frequently results in growth defects in the yeast Saccharomyces cerevisiae and neuorological disorders in humans. S. cerevsiaie has two tRNA quality control decay pathways that sense tRNAs lacking modifications in the main tRNA body. One of these, the rapid tRNA decay (RTD) pathway, targets mature tRNAs for 5’-3’ exonucleolytic decay by Rat1 and Xrn1. It is unknown if RTD is conserved in eukaryotes, and if it might explain phenotypes associated with body modification defects. Here we focus on trm8Δ mutants, lacking m7G46, in the evolutionarily distant yeast Schizosaccharomyces pombe. Loss of m7G causes temperature sensitivity and RTD in S. cerevisiae, microcephalic primordial dwarfism in humans, and defective stem cell renewal in mice. We show that S. pombe trm8Δ mutants are temperature sensitive due to tY(GUA) decay by Rat1, implying conservation of RTD among divergent eukaryotes. We also show that the onset of RTD triggers activation of the general amino acid control (GAAC) pathway in both S. pombe and S. cerevisiae, resulting in exacerbated decay in S. pombe and reduced decay in S. cerevisiae. We speculate that RTD and its regulation of the GAAC pathway will be widely conserved in eukaryotes including humans.


Sign in / Sign up

Export Citation Format

Share Document