Structure and properties of aluminum alloy 1421 after equal-channel angular pressing and isothermal rolling

2008 ◽  
Vol 106 (4) ◽  
pp. 424-433 ◽  
Author(s):  
A. A. Mogucheva ◽  
R. O. Kaibyshev
Author(s):  
Seyed Mahmoud Ghalehbandi ◽  
Alireza Fallahi Arezoodar ◽  
Hossein Hosseini-Toudeshky

Effect of aging treatment on mechanical properties of an age-hardenable aluminum alloy after equal channel angular pressing at room temperature has been investigated using hardness, stress–strain behavior and surface fractography. Aluminum alloy 7075 was pressed after solution treatment. Yield stress, ultimate stress and hardness of pressed samples have increased significantly compared with those of coarse grain, but the elongation to failure has decreased. Also the pressed specimens were subjected to aging treatment at room temperature and temperatures of 80 °C, 100 °C, 120 °C and 140 °C to obtain the optimized strength and ductility. The results indicated that post–equal channel angular pressing aging at 80 °C has resulted in the maximum strength, and natural aging has resulted in good ductility and acceptable strength. It confirmed the fact that there is a potential in obtaining high strength and good ductility in age-hardenable alloys employing severe plastic deformation and subsequent aging.


2013 ◽  
Vol 745-746 ◽  
pp. 303-308
Author(s):  
Zhen Zhang ◽  
Man Ping Liu ◽  
Ying Da Yu ◽  
Pål C. Skaret ◽  
Hans Jørgen Roven

In the present work, a peak-aged 6061 Al-Mg-Si aluminum alloy was subjected to equal channel angular pressing (ECAP) at 110 °C. The microstructure of the sample was characterized by high-resolution transmission electron microscope and weak-beam dark-field method. It was shown that the dislocation density in some local areas is much lower than the average dislocation density expected in the usual alloys processed by severe plastic deformation. High-resolution transmission electron microscope observations indicated that many full dislocations were dissociated into partial dislocations connected by stacking faults. In addition, a Z-shaped defect (i.e., a type of dislocation locks) probably formed by the reactions of the partials in different {111} planes was first observed in the ECAPed alloy. Furthermore, the precipitation behavior and sequence in the present ECAPed sample were identified by high-resolution transmission electron microscopy.


2010 ◽  
Vol 46 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Chuan Ting Wang ◽  
Nong Gao ◽  
Robert J. K. Wood ◽  
Terence G. Langdon

Sign in / Sign up

Export Citation Format

Share Document