Thermal Expansion, Heat Capacity, and Thermodynamic Properties of Monoclinic Lanthanide Orthotantalates: A Review

2021 ◽  
Vol 66 (13) ◽  
pp. 1947-1972
Author(s):  
V. N. Guskov ◽  
K. S. Gavrichev
2014 ◽  
Vol 69 (1-2) ◽  
pp. 52-60
Author(s):  
Li-Qin Zhang ◽  
Yan Cheng ◽  
Zhen-Wei Niu ◽  
Guang-Fu Ji

The structural stability, thermodynamic, elastic, and electronic properties of cerium (Ce)- lanthanum (La) alloys were investigated for different Ce/La ratios under pressure by first-principles calculations using on-the-fly (OTF) pseudopotential and general gradient approximation (GGA). The ground-state properties of lanthanum and cerium obtained by minimizing the total energy agree favourably with other work.We derived the elastic constants, bulk modulus, and shear modulus of the La-Ce alloys for different Ce/La ratios. Using the quasi-harmonic Debye model, the thermodynamic properties of the La-Ce alloys including the thermal expansion coefficient α and heat capacity Cv are successfully obtained in the temperature range from 0 K to 1000 K. Furthermore, the electronic properties such as density of states and charge densities were also studied.


2018 ◽  
Vol 60 (5) ◽  
pp. 964
Author(s):  
Zhiqin Wen ◽  
Yuhong Zhao ◽  
Hua Hou ◽  
Liwen Chen

AbstractFirst-principles calculations are performed to investigate lattice parameters, elastic constants and 3D directional Young’s modulus E of nickel silicides (i.e., β-Ni_3Si, δ-Ni_2Si, θ-Ni_2Si, ε-NiSi, and θ-Ni_2Si), and thermodynamic properties, such as the Debye temperature, heat capacity, volumetric thermal expansion coefficient, at finite temperature are also explored in combination with the quasi-harmonic Debye model. The calculated results are in a good agreement with available experimental and theoretical values. The five compounds demonstrate elastic anisotropy. The dependence on the direction of stiffness is the greatest for δ-Ni_2Si and θ-Ni_2Si, when the stress is applied, while that for β-Ni_3Si is minimal. The bulk modulus B reduces with increasing temperature, implying that the resistance to volume deformation will weaken with temperature, and the capacity gradually descend for the compound sequence of β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > ε-NiSi > θ-Ni_2Si. The temperature dependence of the Debye temperature ΘD is related to the change of lattice parameters, and ΘD gradually decreases for the compound sequence of ε-NiSi > β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > θ-Ni_2Si. The volumetric thermal expansion coefficient αV, isochoric heat capacity and isobaric heat capacity C _ p of nickel silicides are proportional to T ^3 at low temperature, subsequently, αV and C _ p show modest linear change at high temperature, whereas C _v obeys the Dulong-Petit limit. In addition, β-Ni_3Si has the largest capability to store or release heat at high temperature. From the perspective of solid state physics, the thermodynamic properties at finite temperature can be used to guide further experimental works and design of novel nickel–silicon alloys.


2012 ◽  
Vol 534 ◽  
pp. 192-196
Author(s):  
Yu Hong Huang ◽  
Wan Qi Jie ◽  
Gang Qiang Zha

The elastic and thermodynamic properties of CdTe are studied under a pressure up to 8GPa and at a temperature range of 0~900K, by density functional theory as well as quasi-harmonic Debye model. The calculated bulk modulus B and its derivative B' are consistent with the values fitted according to Debye model, which confirms the applicability of Debye model to CdTe. Heat capacity Cv , Grüneisen parameter and thermal expansion coefficient decrease with pressure, but increase with temperature. It is an opposite case for Debye temperature . The results may be instructive for CdTe to be applied in extreme conditions.


2015 ◽  
Vol 44 (28) ◽  
pp. 12735-12742 ◽  
Author(s):  
Philippe F. Weck ◽  
Eunja Kim

The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The predicted thermal expansion and isobaric heat capacity are in excellent agreement with available experimental data.


1998 ◽  
Vol 12 (02) ◽  
pp. 191-205 ◽  
Author(s):  
Vu Van Hung ◽  
Nguyen Thanh Hai

By the moment method established previously on the basis of the statistical mechanics, the thermodynamic properties of a strongly anharmonic face-centered and body-centered cubic crystal with point defect are considered. The thermal expansion coefficient, the specific heat Cv and Cp, the isothermal and adiabatic compressibility, etc. are calculated. Our calculated results of the thermal expansion coefficient, the specific heat Cv and Cp… of W, Nb, Au and Ag metals at various temperatures agrees well with the measured values. The anharmonic effects in extended X-ray absorption fine structure (EXAFS) in the single-shell model are considered. We have obtained a new formula for anharmonic contribution to the mean square relative displacement. The anharmonicity is proportional to the temperature and enters the phase change of EXAFS. Our calculated results of Debye–Waller factor and phase change in EXAFS of Cu at various temperatures agrees well with the measured values.


1988 ◽  
Vol 129 (1) ◽  
pp. 115-125 ◽  
Author(s):  
F. Grønvold ◽  
S. Stølen ◽  
E.F. Westrum ◽  
A.K. Labban ◽  
B. Uhrenius

2003 ◽  
Vol 35 (12) ◽  
pp. 1897-1903 ◽  
Author(s):  
Li-Guo Kong ◽  
Zhi-Cheng Tan ◽  
Jie Xu ◽  
Shuang-He Meng ◽  
Xin-He Bao

1980 ◽  
Vol 12 (3) ◽  
pp. 301-302
Author(s):  
G. Coffy ◽  
T. Matsuo ◽  
S. Sunner ◽  
A. Tranquard

Sign in / Sign up

Export Citation Format

Share Document