Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals

2017 ◽  
Vol 2017 (5) ◽  
pp. 413-425 ◽  
Author(s):  
V. N. Chuvil’deev ◽  
M. M. Myshlyaev ◽  
A. V. Nokhrin ◽  
V. I. Kopylov ◽  
Yu. G. Lopatin ◽  
...  
2015 ◽  
Vol 5 ◽  
pp. 111-126
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
I.P. Mishin

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.


2015 ◽  
Vol 5 ◽  
pp. 43-54 ◽  
Author(s):  
Ruslan Z. Valiev

Nanostructuring of metals and alloys by severe plastic deformation techniques is an effective way of enhancing their mechanical and functional properties. The features of the nanostructured materials produced by severe plastic deformation (SPD) are stipulated by forming of ultrafine-sized grains as well as by the state of grain boundaries. The concept of grain boundary (GB) design of ultrafine-grained metals and alloys is developed for enhancement of their properties by tailoring grain boundaries of different types (low-angle and high-angle ones, special and random, equilibrium and nonequilibrium) and formation of grain boundary segregations and precipitations by SPD processing. The paper presents experimental data demonstrating the super-strength and “positive” slope of the Hall-Petch relation when passing from micro-to nanostructured state in a number of metallic materials subjected to severe plastic deformation. The nature of the superior strength is associated with new strengthening mechanisms and the difficulty of generation of dislocations from grain boundaries with segregations. This new approach is used for achieving the enhanced strength in several commercial Al and Ti alloys as well as steels subjected to SPD processing.


2015 ◽  
Vol 5 ◽  
pp. 77-92 ◽  
Author(s):  
Xavier Sauvage ◽  
Yana Nasedkina

During the past two decades, processing of ultrafine grained materials using severe plastic deformation techniques has attracted great interest in the scientific community. Although the up-scaling of processes and the lack of ductility of ultrafine grained alloys are still some important challenges, these techniques look promising because they produce bulk materials free of porosities. More recently, some strategies to combine precipitation hardening and ultrafine grained structures have been proposed. It has also been shown that nanoscaled composite materials could be successfully processed. This experimental work rose however some very fundamental scientific questions about the influence of severe plastic deformation on the precipitation mechanisms or on the formation of supersaturated solid solution through mechanical mixing. The driving force and the thermodynamics of these phase transformations are of course affected by the high amount of energy stored in severely deformed alloys, especially as interfacial energy. But grain boundaries, with the help of dislocations and point defects, also play an important role in the kinetics. In this paper, it is proposed to shortly review these phenomena and the underlying mechanisms with a special emphasis on the contribution of grain boundaries.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


Sign in / Sign up

Export Citation Format

Share Document