Optimization of gas path aerodynamics for PK-39 boiler of power generating unit No. 4 of Troitskaya SDPP using numerical simulation of gas flows

2015 ◽  
Vol 62 (12) ◽  
pp. 886-891 ◽  
Author(s):  
V. B. Prokhorov ◽  
I. V. Grigorev ◽  
M. V. Fomenko ◽  
A. A. Kaverin
2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


2015 ◽  
Vol 55 (4) ◽  
pp. 677-689
Author(s):  
D. A. Zabarko ◽  
V. I. Zubov ◽  
V. P. Kotenev ◽  
V. M. Krivtsov ◽  
Yu. A. Polezhaev

1987 ◽  
Vol 21 (4) ◽  
pp. 632-638
Author(s):  
A. Yu. Dem'yanov ◽  
A. V. Panasenko

Energy ◽  
2012 ◽  
Vol 37 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Chuang Wen ◽  
Xuewen Cao ◽  
Yan Yang ◽  
Wenlong Li

2000 ◽  
Vol 18 (2) ◽  
pp. 189-195
Author(s):  
D.V. NEUVAZHAYEV ◽  
N.S. ESKOV ◽  
A.S. KOZLOVSKIKH

The work is devoted to direct numerical simulation of turbulent mixing by shear driven instability at an interface of two plane-parallel gas flows. The work presents the results obtained in 2D simulations of turbulence being developed at the interface of two almost incompressible gases using the MAX program package. Spatial and temporal evolution of the turbulence zone resulted from shear driven instability is studied. We calculated the constant of shear driven turbulence mixing and investigated how the rate of turbulence zone growth depended on density difference of mixed fluids. Heterogeneity coefficient of the mixture was calculated for all considered density differences.


2020 ◽  
Vol 2020 (4) ◽  
pp. 65-71
Author(s):  
Yu.A. Kvasha ◽  

This work is devoted to the development of approaches to the numerical simulation of 3D turbulent gas flows in different ducts of aircraft gas turbine engines, in particular in inlet device ducts. Inlet devices must provide large values of the total pressure recovery factor and flow uniformity at the engine compressor inlet. The aim of this work is the verification of the operability of a technique developed earlier for the calculation of the parameters of a 3D turbulent flow in complex-shape ducts. The basic approach is a numerical simulation of 3D turbulent gas flows on the basis of the complete averaged Navier¬–Stokes equations and a two-parameter turbulence model. The proposed technique of numerical simulation of a 3D gas flow was tested by calculating a 3D laminar flow in a square pipe bent at a right angle. The calculated flow pattern is in satisfactory agreement with the experimental data on the flow structure in a pipe elbow reported in the literature. Based on a numerical simulation of a 3D turbulent flow in the air duct of one of the air intake configurations for an aircraft turboprop engine, the efficiency of that configuration is assessed. The calculated flow parameter nonuniformity at the air intake outlet, i. e., at the compressor inlet, is compared with that obtained earlier for another air intake configuration for the same engine. It is pointed out that the air intake configuration considered earlier provides a much more uniform flow parameter distribution at the engine compressor inlet. On the whole, this work shows that the quality of subsonic air intakes for aircraft gas turbine engines can be assessed using the proposed numerical technique of 3D gas flow simulation. The results obtained may be used in the aerodynamic improvement of inlet devices for aircraft engines of different types.


Sign in / Sign up

Export Citation Format

Share Document