Conformational stability of bovine serum albumin in complexes with poly[di(carboxylatophenoxy)phosphazene]

2015 ◽  
Vol 57 (6) ◽  
pp. 761-772 ◽  
Author(s):  
T. V. Burova ◽  
N. V. Grinberg ◽  
A. S. Dubovik ◽  
V. Ya. Grinberg
Author(s):  
Akshay Mathavan ◽  
Akash Mathavan ◽  
Michael Fortunato ◽  
Coray Colina

A fully-atomistic molecular dynamics study was performed to determine the importance of disulfide bonds on the stability of immunoglobulin G (IgG) and bovine serum albumin (BSA).The transferability of a previous prescreening methodology to assess contributions from individual disulfide bonds on conformational stability was tested on both proteins. In IgG, it was apparent that inter-chain and intra-chain disulfide bonds play different roles in maintaining structure, evidenced by clear separation of inter-chain cysteine residues upon cleavage of disulfide bonds. In BSA, a set of double disulfide bonds required both to be broken in order to observe significant structural changes, equivalently seen in a previous study of human serum albumin (HSA), a structurally similar protein. Structural analysis of IgG showed deviations in distances between domains, while analysis of BSA suggested more local structural changes. This work helps confirm the efficacy and reproducibility of the prescreening methodology on both a novel, larger protein such as IgG and a more homologous (to HSA), globular protein such as BSA. The results provide insight into the role of specific disulfide bonds in the stability of IgG and BSA. KEYWORDS: Molecular Dynamics; Atomistic Simulations; Immunoglobulin G; Bovine Serum Albumin; Disulfide Bonds


2022 ◽  
Vol 52 (1) ◽  
pp. 7-13
Author(s):  
SAAD TAYYAB ◽  
TUAN NOR NAZIAN TUAN MAT ◽  
ADYANI AZIZAH ABD HALIM

The conformational stability of bovine serum albumin (BSA) against urea denaturation was investigated in aqueous solutions both in the absence and presence of buffers. Various buffers differing in polar and nonpolar characters such as sodium phosphate, Tris-HCl, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) HEPES and [3-(N-morpholino)propanesulfonic acid] MOPS buffers were used in this study. Urea-induced structural changes were analyzed using different probes, i.e., intrinsic fluorescence, ANS fluorescence and UV-difference spectral signal.  Presence of different buffers in the incubation medium offered different degrees of resistance to the protein against urea-induced structural changes compared to those obtained in water (in the absence of buffers). A similar trend of buffer-induced structural resistance was noticed with three different probes. The stabilizing effect of these buffers followed the order: MOPS > HEPES > sodium phosphate > Tris-HCl > water. As found in MOPS and HEPES  buffers, the highest stability of BSA can be attributed to the presence of morpholine and piperazine rings, respectively, in their structures. These groups might have produced a hydrophobic environment around the protein surface, thus stabilizing protein conformation against urea denaturation.


2008 ◽  
Vol 877 (1-3) ◽  
pp. 44-49 ◽  
Author(s):  
Ling-Zhi Wu ◽  
Bao-Liang Ma ◽  
Da-Wei Zou ◽  
Zuo-Xiu Tie ◽  
Jun Wang ◽  
...  

2010 ◽  
Vol 28 (6) ◽  
pp. 873-878
Author(s):  
Lin Ma ◽  
Chunli Liu ◽  
Aiming Huang ◽  
Dankui Liao ◽  
Hua Yang ◽  
...  

Author(s):  
G. D. Gagne ◽  
M. F. Miller

We recently described an artificial substrate system which could be used to optimize labeling parameters in EM immunocytochemistry (ICC). The system utilizes blocks of glutaraldehyde polymerized bovine serum albumin (BSA) into which an antigen is incorporated by a soaking procedure. The resulting antigen impregnated blocks can then be fixed and embedded as if they are pieces of tissue and the effects of fixation, embedding and other parameters on the ability of incorporated antigen to be immunocyto-chemically labeled can then be assessed. In developing this system further, we discovered that the BSA substrate can also be dried and then sectioned for immunolabeling with or without prior chemical fixation and without exposing the antigen to embedding reagents. The effects of fixation and embedding protocols can thus be evaluated separately.


Sign in / Sign up

Export Citation Format

Share Document