Identification of Sable (Martes zibellina L.) Populations in the Southern Part of the Species Range

2021 ◽  
Vol 57 (10) ◽  
pp. 1179-1188
Author(s):  
S. N. Kashtanov ◽  
M. V. Shitova ◽  
M. M. Somova ◽  
P. A. Filimonov ◽  
O. Yu. Tyutenkov ◽  
...  
2019 ◽  
Vol 488 (1) ◽  
pp. 495-511
Author(s):  
Yuefang Wu ◽  
Xunchuan Liu ◽  
Xi Chen ◽  
Lianghao Lin ◽  
Jinghua Yuan ◽  
...  

Abstract Using the new equipment of the Shanghai Tian Ma Radio Telescope, we have searched for carbon-chain molecules (CCMs) towards five outflow sources and six Lupus I starless dust cores, including one region known to be characterized by warm carbon-chain chemistry (WCCC), Lupus I-1 (IRAS 15398-3359), and one TMC-1 like cloud, Lupus I-6 (Lupus-1A). Lines of HC3N J = 2 − 1, HC5N J = 6 − 5, HC7N J = 14 − 13, 15 − 14, 16 − 15, and C3S J = 3 − 2 were detected in all the targets except in the outflow source L1660 and the starless dust core Lupus I-3/4. The column densities of nitrogen-bearing species range from 1012 to 1014 cm−2 and those of C3S are about 1012 cm−2. Two outflow sources, I20582+7724 and L1221, could be identified as new carbon-chain-producing regions. Four of the Lupus I dust cores are newly identified as early quiescent and dark carbon-chain-producing regions similar to Lup I-6, which together with the WCCC source, Lup I-1, indicate that carbon-chain-producing regions are popular in Lupus I which can be regard as a Taurus-like molecular cloud complex in our Galaxy. The column densities of C3S are larger than those of HC7N in the three outflow sources I20582, L1221, and L1251A. Shocked carbon-chain chemistry is proposed to explain the abnormal high abundances of C3S compared with those of nitrogen-bearing CCMs. Gas-grain chemical models support the idea that shocks can fuel the environment of those sources with enough S+ thus driving the generation of S-bearing CCMs.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


Author(s):  
Domingo Alcaraz-Segura ◽  
Angela Lomba ◽  
Rita Sousa-Silva ◽  
Diego Nieto-Lugilde ◽  
Paulo Alves ◽  
...  

Coral Reefs ◽  
2007 ◽  
Vol 26 (2) ◽  
pp. 229-229 ◽  
Author(s):  
A. Gilbert ◽  
S. Planes ◽  
S. Andréfouët ◽  
K. Friedman ◽  
G. Remoissenet

2011 ◽  
Vol 108 (28) ◽  
pp. 11704-11709 ◽  
Author(s):  
J. P. Sexton ◽  
S. Y. Strauss ◽  
K. J. Rice
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document