scholarly journals Habitat Elevation Shapes Microbial Community Composition and Alter the Metabolic Functions in Wild Sable (Martes zibellina) Guts

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.

2005 ◽  
Vol 71 (7) ◽  
pp. 3928-3934 ◽  
Author(s):  
Mamie Nozawa-Inoue ◽  
Kate M. Scow ◽  
Dennis E. Rolston

ABSTRACT Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.


2021 ◽  
Author(s):  
Johannes Rousk ◽  
Lettice Hicks

<p>Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions.</p><p>We first view the microbial community associated with a specific function as a whole, and describe the dependence of microbial functions on environmental factors (e.g. the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of “biomarker” taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition.</p><p>In this presentation, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.</p>


2005 ◽  
Vol 71 (11) ◽  
pp. 6986-6997 ◽  
Author(s):  
Mark Skidmore ◽  
Suzanne P. Anderson ◽  
Martin Sharp ◽  
Julia Foght ◽  
Brian D. Lanoil

ABSTRACT Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Ryan A. Blaustein ◽  
Graciela L. Lorca ◽  
Julie L. Meyer ◽  
Claudio F. Gonzalez ◽  
Max Teplitski

ABSTRACTStable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused byLiberibacter asiaticus,Liberibacter americanus, andLiberibacter africanus. The microbial communities of leaves (n= 94) and roots (n= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance ofLiberibacterspp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship betweenLiberibacterspp. and members of theBurkholderiaceae,Micromonosporaceae, andXanthomonadaceae. This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCEThis study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Maturana-Martínez ◽  
Camila Fernández ◽  
Humberto E. González ◽  
Pierre E. Galand

Microorganisms play a crucial role in biogeochemical processes affecting the primary production and biogeochemical cycles of the ocean. In subpolar areas, the increment of the water temperature induced by climate change could lead to changes in the structure and activity of planktonic microbial communities. To understand how the structure of the microbial community in Chilean Patagonian fjords could be affected by climate change, we analyzed the composition of the prokaryotic community (bacteria-archaea) in two fjords (Pia and Yendegaia) with contrasting morphological and hydrological features. We targeted both the standing stock (16S rRNA genes) and the active fraction (16S rRNA transcripts) of the microbial communities during two consecutive austral winters. Our results showed that in both fjords, the active community had higher diversity and stronger biogeographic patterns when compared to the standing stock. Members of the Alpha-, Gamma-, and Deltaproteobacteria followed by archaea from the Marine Group I (Thaumarchaeota) dominated the active communities in both fjords. However, in Pia fjord, which has a marine-terminating glacier, the composition of the microbial community was directly influenced by the freshwater discharges from the adjacent glacier, and indirectly by a possible upwelling phenomenon that could bring deep sea bacteria such as SAR202 to the surface layer. In turn, in the Yendegaia, which has a land-terminating glacier, microbial communities were more similar to the ones described in oceanic waters. Furthermore, in Yendegaia fjord, inter-annual differences in the taxonomic composition and diversity of the microbial community were observed. In conclusion, Yendegaia fjord, without glacier calving, represents a fjord type that will likely be more common under future climate scenarios. Our results showing distinct Yendegaia communities, with for example more potential nitrogen-fixing microorganisms (Planctomycetes), indicate that as a result of climate change, changing planktonic communities could potentially impact biogeochemical processes and nutrient sources in subantarctic fjords.


2020 ◽  
Author(s):  
Joeselle M. Serrana ◽  
Bin Li ◽  
Tetsuya Sumi ◽  
Yasuhiro Takemon ◽  
Kozo Watanabe

AbstractBackgroundRiver restoration efforts are expected to influence and change the diversity and functions of microbial communities following the recovery of habitat characteristics in the river ecosystem. The recreation or restoration of gravel bars in the Trinity River in California aims to rehabilitate the environmental heterogeneity downstream of the dam impounded channel. Here, we profiled the community composition, estimated diversity, and annotated putative metabolic functions of the sediment microbial communities to assess whether the construction and restoration of gravel bars in the Trinity River in California enhanced environmental heterogeneity, with the increase in the microbial beta diversity of these in-channel structures against the free-flowing reach of the main channel with comparison to its undisturbed tributaries.ResultsMicrobial community composition of the free-flowing (i.e., no gravel bars) communities were relatively closer regardless of dam influence, whereas the Trinity River gravel bar and tributaries’ gravel bar communities were highly dissimilar. Proteobacteria, Bacteroidetes, and Acidobacteria were the highly abundant sediment microbial phyla on most sites, specifically in the Trinity River gravel bar communities. Putative functional annotation of microbial taxa revealed that chemoheterotrophy and aerobic chemoheterotrophy were the most prevalent microbial processes, with the Trinity River gravel bars having relatively higher representations. The considerably large abundance of heterotrophic taxa implies that gravel bars provide suitable areas for heterotrophic microorganisms with metabolic functions contributing to the net respiration in the river.ConclusionsOur results provide supporting evidence on the positive impact of habitat restoration being conducted in the Trinity River with the non-dam influenced, undisturbed tributaries as the basis of comparison. Gravel bar recreation and restoration contributed to the increased microbial biodiversity through the restoration of environmental heterogeneity at the river scale. We provided valuable insights into the potential microbial processes in the sediment that might be contributing to the biogeochemical processes carried out by the microbial communities in the Trinity River. The significant positive correlation between the functional diversity of the identified microbial taxa and beta diversity suggests that differences in the detected metabolic functions were closely related to dissimilarities in community composition.


2018 ◽  
Vol 115 (25) ◽  
pp. E5786-E5795 ◽  
Author(s):  
Ashley A. Ross ◽  
Kirsten M. Müller ◽  
J. Scott Weese ◽  
Josh D. Neufeld

Skin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment, yet the factors that govern skin microbial community composition among mammals are poorly understood. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. Skin from the back, torso, and inner thighs of 177 nonhuman mammals was sampled, representing individuals from 38 species and 10 mammalian orders. Animals were sampled from farms, zoos, households, and the wild. The DNA extracts from all skin swabs were amplified by PCR and sequenced, targeting the V3-V4 regions of bacterial and archaeal 16S rRNA genes. Previously published skin microbiome data from 20 human participants, sampled and sequenced using an identical protocol to the nonhuman mammals, were included to make this a comprehensive analysis. Human skin microbial communities were distinct and significantly less diverse than all other sampled mammalian orders. The factor most strongly associated with microbial community data for all samples was whether the host was a human. Within nonhuman samples, host taxonomic order was the most significant factor influencing skin microbiota, followed by the geographic location of the habitat. By comparing the congruence between host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing evidence of phylosymbiosis between skin microbial communities and their hosts.


2007 ◽  
Vol 73 (18) ◽  
pp. 5885-5896 ◽  
Author(s):  
Mandy M. Michalsen ◽  
Aaron D. Peacock ◽  
Anne M. Spain ◽  
Amanda N. Smithgal ◽  
David C. White ◽  
...  

ABSTRACT In a previous column study, we investigated the long-term impact of ethanol additions on U and Tc mobility in groundwater (M. M. Michalsen et al., Environ. Sci. Technol. 40:7048-7053, 2006). Ethanol additions stimulated iron- and sulfate-reducing conditions and significantly enhanced U and Tc removal from groundwater compared to an identical column that received no ethanol additions (control). Here we present the results of a combined signature lipid and nucleic acid-based microbial community characterization in sediments collected from along the ethanol-stimulated and control column flow paths. Phospholipid fatty acid analysis showed both an increase in microbial biomass (∼2 orders of magnitude) and decreased ratios of cyclopropane to monoenoic precursor fatty acids in the stimulated column compared to the control, which is consistent with electron donor limitation in the control. Spatial shifts in microbial community composition were identified by PCR-denaturing gradient gel electrophoresis analysis as well as by quantitative PCR, which showed that Geobacteraceae increased significantly near the stimulated-column outlet, where soluble electron acceptors were largely depleted. Clone libraries of 16S rRNA genes from selected flow path locations in the stimulated column showed that Proteobacteria were dominant near the inlet (46 to 52%), while members of candidate division OP11 were dominant near the outlet (67%). Redundancy analysis revealed a highly significant difference (P = 0.0003) between microbial community compositions within stimulated and control sediments, with geochemical variables explaining 68% of the variance in community composition on the first two canonical axes.


2015 ◽  
Vol 81 (13) ◽  
pp. 4246-4252 ◽  
Author(s):  
Yan Yan ◽  
Eiko E. Kuramae ◽  
Peter G. L. Klinkhamer ◽  
Johannes A. van Veen

ABSTRACTIt is hard to assess experimentally the importance of microbial diversity in soil for the functioning of terrestrial ecosystems. An approach that is often used to make such assessment is the so-called dilution method. This method is based on the assumption that the biodiversity of the microbial community is reduced after dilution of a soil suspension and that the reduced diversity persists after incubation of more or less diluted inocula in soil. However, little is known about how the communities develop in soil after inoculation. In this study, serial dilutions of a soil suspension were made and reinoculated into the original soil previously sterilized by gamma irradiation. We determined the structure of the microbial communities in the suspensions and in the inoculated soils using 454-pyrosequencing of 16S rRNA genes. Upon dilution, several diversity indices showed that, indeed, the diversity of the bacterial communities in the suspensions decreased dramatically, withProteobacteriaas the dominant phylum of bacteria detected in all dilutions. The structure of the microbial community was changed considerably in soil, withProteobacteria,Bacteroidetes, andVerrucomicrobiaas the dominant groups in most diluted samples, indicating the importance of soil-related mechanisms operating in the assembly of the communities. We found unique operational taxonomic units (OTUs) even in the highest dilution in both the suspensions and the incubated soil samples. We conclude that the dilution approach reduces the diversity of microbial communities in soil samples but that it does not allow accurate predictions of the community assemblage during incubation of (diluted) suspensions in soil.


2011 ◽  
Vol 77 (19) ◽  
pp. 6908-6917 ◽  
Author(s):  
Hyung Soo Park ◽  
Indranil Chatterjee ◽  
Xiaoli Dong ◽  
Sheng-Hung Wang ◽  
Christoph W. Sensen ◽  
...  

ABSTRACTPipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) ofPseudomonasnot found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereasDeltaproteobacteriaof the generaDesulfomicrobiumandDesulfocapsawere not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) ofMethanobacteriaceaearchaea but increased fractions of sulfate-reducingDesulfomicrobium(18% and 48%) and of bisulfite-disproportionatingDesulfocapsa(35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters.


Sign in / Sign up

Export Citation Format

Share Document