Structure of Interpenetrating Networks of Xanthan Polysaccharide and Wormlike Surfactant Micelles

Author(s):  
A. V. Shibaev ◽  
D. A. Muravlev ◽  
V. V. Skoi ◽  
A. V. Rogachev ◽  
A. I. Kuklin ◽  
...  
Author(s):  
David M. Anderson ◽  
Tomas Landh

First discovered in surfactant-water liquid crystalline systems, so-called ‘bicontinuous cubic phases’ have the property that hydropnilic and lipophilic microdomains form interpenetrating networks conforming to cubic lattices on the scale of nanometers. Later these same structures were found in star diblock copolymers, where the simultaneous continuity of elastomeric and glassy domains gives rise to unique physical properties. Today it is well-established that the symmetry and topology of such a morphology are accurately described by one of several triply-periodic minimal surfaces, and that the interface between hydrophilic and hydrophobic, or immiscible polymer, domains is described by a triply-periodic surface of constant, nonzero mean curvature. One example of such a dividing surface is shown in figure 5.The study of these structures has become of increasing importance in the past five years for two reasons:1)Bicontinuous cubic phase liquid crystals are now being polymerized to create microporous materials with monodispersed pores and readily functionalizable porewalls; figure 3 shows a TEM from a polymerized surfactant / methylmethacrylate / water cubic phase; and2)Compelling evidence has been found that these same morphologies describe biomembrane systems in a wide range of cells.


2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2019 ◽  
Author(s):  
Allison Edwards ◽  
Abdolreza Javidialesaadi ◽  
Katie Weigandt ◽  
George Stan ◽  
Charles Eads

We study molecular arrangements and dynamics in alkyl ethoxylate nonionic surfactant micelles by combining high field (600 and 700 MHz) NMR relaxation measurements with large-scale atomistic molecular dynamics simulations. For spherical micelles, but not for cylindrical micelles, cross relaxation rates are positive only for surfactant alkyl tail atoms connected to the hydrophilic head group. All cross relaxation rates are negative for cylindrical micelles. This effect is reproducible either by changing composition (ratios of the nonionic surfactants) or changing temperature of a single surfactant in order to change the micelle shape. We validate the micelle shape by SANS and use the results as a guide for our simulations. We calculate parameters that determine relaxation rates directly from simulated trajectories, without introducing specific functional forms. Results indicate that relative motions of nearby atoms are liquid-like, in agreement with 13C T1 measurements, though constrained by micelle morphology. Relative motions of distant atoms have slower components because the relative changes in distances and angles are smaller when the moving atoms are further apart. The slow, long-range motions appear to be responsible for the predominantly negative cross relaxation rates observed in NOESY spectra. The densities of atoms from positions 1 and 2 in the boundary region are lower in spherical micelles compared to cylindrical micelles. Correspondingly, motions in this region are less constrained by micelle morphology in the spherical compared to the cylindrical cases. The two effects of morphology lead to the unusual occurrence of positive cross relaxation involving positions 1 and 2 for spheres.


2020 ◽  
Vol 15 ◽  
Author(s):  
Ashish Katoch ◽  
Manju Nagpal ◽  
Malkiet Kaur ◽  
Manjinder Singh ◽  
Geeta Aggarwal ◽  
...  

Background: Controlled oral dosage forms have always been preferred for drugs with variable absorption, and short biological half life and frequent dosing. The prime goal with sustained release systems is to maintain uniform therapeutic blood levels for longer periods of time. Interpenetrating networks (IPNs) have been evidenced as uniform sustained release systems. In current study, polyvinyl alcohol (PVA) and locust bean gum (LBG) based IPNs were developed for the oral sustained release drug delivery of gliclazide (shows variable absorption). Method: The IPNs were synthesized by emulsion cross-linking method using glutaraldehyde (GA) as a cross linking agent. Gliclazide is a potential second generation, short-acting sulfonylurea oral hypoglycemic agent is having a short biological half-life (2-4 h), variable absorption and poor oral bioavailability. Various batches of IPNs were formulated by varying LBG: PVA ratio and evaluated for percentage yield, drug entrapment efficiency (DEE), swelling properties and in vitro drug release studies. Further characterizations were done by Fourier Transform Infrared Spectroscopy (FTIR), C13 Solid state NMR, X-Ray diffraction study (XRD), Scanning electron microscopy (SEM), and Differential scanning microscopy (DSC) studies. Results: The percentage yield, drug entrapment and equilibrium swelling was observed to be dependent on PVA-LBG ratio and GA amount. Sustained release of drug was observed in all IPN formulations (approx 59 - 86% in 8 h in various batches) with variable release kinetics. SEM studies revealed the regular structures of IPNs. FTIR, XRD, C13 Solid state NMR and DSC studies proposed that drug was successfully incorporated into the formed IPNs. Conclusion: IPNs of LBG and PVA can be used as a promising carrier with uniform sustained release characteristics.


2021 ◽  
Vol 306 (4) ◽  
pp. 2000776
Author(s):  
Mariia Zhyhailo ◽  
Andriy Horechyy ◽  
Jochen Meier‐Haack ◽  
Petr Formanek ◽  
Mikhail Malanin ◽  
...  

2009 ◽  
Vol 143 ◽  
pp. 345 ◽  
Author(s):  
Aurelie M. Brizard ◽  
Marc C. A. Stuart ◽  
Jan H. van Esch

Author(s):  
Alexander S. Ospennikov ◽  
Alexey A. Gavrilov ◽  
Oleksandr P. Artykulnyi ◽  
Alexander I. Kuklin ◽  
Valentin V. Novikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document