Possibility of the development of a high-viscous oil reservoir by water flooding

2006 ◽  
Vol 407 (1) ◽  
pp. 205-208 ◽  
Author(s):  
V. V. Bulaev ◽  
S. N. Zakirov ◽  
E. S. Zakirov
2013 ◽  
Vol 109 ◽  
pp. 1-11 ◽  
Author(s):  
Elham Yasari ◽  
Mahmoud Reza Pishvaie ◽  
Farhad Khorasheh ◽  
Karim Salahshoor ◽  
Riyaz Kharrat

1990 ◽  
Vol 5 (01) ◽  
pp. 33-40 ◽  
Author(s):  
D.S. Hughes ◽  
D. Teeuw ◽  
C.W. Cottrell ◽  
J.M. Tollas

2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


2014 ◽  
Author(s):  
H.. Wang ◽  
X.. Liao ◽  
H.. Ye ◽  
X.. Zhao ◽  
C.. Liao ◽  
...  

Abstract The technology of Stimulated reservoir volume (SRV) has been the key technology for unconventional reservoir development, it can create fracture network in formation and increase the contact area between fracture surface and matrix, thus realizing the three-dimensional stimulation and enhancing single well productivity and ultimate recovery. In China, the Ordos Basin contains large areas of tight oil reservoir with the porosity of 2~12 % and permeability of 0.01~1 mD. The most used development mode is conventional fracturing and water flooding, which is different from the natural depletion mode in oversea, but the development effect is still unfavorable. The idea of SRV is proposed in nearly two years in Changqing Oilfield. SRV measures are implemented in some old wells in tight oil formation. It is a significant problem that should be solved urgently about how to evaluate the volume fracturing effect. Based on the real cases of old wells with SRV measures, the microseismic monitoring is used to analyze the scale of formation stimulation and the complexity of fracture network after volume fracturing; the numerical well test and production data analysis (PDA) are selected to explain the well test data, to analyze the dynamic data, and to compare the changes of formation parameters, fluid parameters and plane streamlines before and after volume fracturing; then the interpretation results of well test with the dynamic of oil and water wells are combined to evaluate the stimulation results of old wells after SRV. This paper has presented a set of screening criteria and an evaluation method of fracturing effect for old well with SRV in tight oil reservoir. It will be helpful to the selection of candidate well and volume fracturing operation in Ordos Basin tight oil reservoir. It should be noted that the evaluation method mentioned in the paper can be expanded to volume stimulation effect evaluation in other unconventional reservoirs, such as tight gas, shale gas and so on.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peike Gao ◽  
Hongbo Wang ◽  
Guanxi Li ◽  
Ting Ma

With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.


2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.


Sign in / Sign up

Export Citation Format

Share Document