scholarly journals The Research and Application of Microbial Degradation Technology on Heavy Oil Reservoir in Huabei Oilfield

2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.

2012 ◽  
Vol 550-553 ◽  
pp. 468-471
Author(s):  
Fu Sheng Zhang ◽  
Jian Ouyang ◽  
De Wei Wang ◽  
Xin Fang Feng ◽  
Li Qing Xu

The core displacement experiments show that displacement system containing chemical agent can enhance oil recovery by over 20% comparing to water flooding. Mechanisms by which chemical agent enhance oil recovery of heavy oil reservoir water flooding are: (1) improving mobility ratio by significantly decreasing viscosity of heavy oil, volumetric sweep efficiency is improved; (2) increasing capillary number by significantly decreasing oil-water interfacial tension, oil displacement efficiency is increased; (3) changing wettability of the rock surface from oil-wet to water-wet by significantly reducing the contact angle between displacement liquid and sandstone surface, capillary force is changed from the resistance force to the motive force, the residual oil is expelled from the small pores and the wall of pores, oil displacement efficiency is significantly increased.


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


2012 ◽  
Vol 550-553 ◽  
pp. 2878-2882 ◽  
Author(s):  
Ping Yuan Gai ◽  
Fang Hao Yin ◽  
Ting Ting Hao ◽  
Zhong Ping Zhang

Based on the issue of enhancing oil recovery of heavy oil reservoir after steam injection, this paper studied the development characteristics of hot water flooding in different rhythm (positive rhythm, anti-rhythm, complex rhythm) reservoir after steam drive by means of physical simulation. The research shows that the positive rhythm reservoir has a large swept volume with steam flooding under the influence of steam overlay and steam channeling. Anti-rhythm reservoir has a large swept volume with hot water flooding, because hot water firstly flows along the high permeability region in upper part of the reservoir, in the process of displacement, hot water migrates to the bottom of reservoir successively for its higher density.


2021 ◽  
Author(s):  
Xinlei Shi ◽  
Jiansheng Zhang ◽  
Yunlong Lu ◽  
Zhilei Han ◽  
Yifan He

Abstract The classification of water flooding severity is crucial for planning reservoir production and improving the recovery ratio. In this paper, we study a siliciclastic heavy oil reservoir in Bohai Bay, with resistivity reading close to, or even lower than the wet zone (3~5Ω.m). In this environment, computing original reservoir Sw using Traditional hydrocarbon saturation equation is challenging. As a result, the displacement efficiency of a water drive cannot be accurately determined. In order to properly evaluate displacement efficiency, we must estimate initial reservoir Sw (Swirr) and the modern day Sw. Sw can typically be estimated from NMR data with a proper T2 time cutoff. However, in heavy oil reservoirs, the relaxation times of oil and capillary bound water overlap, leading to an over-estimation of Sw. We propose to compensate for the heavy oil effect by adjusting the cutoff until NMR Sw matches the Sw from core Mercury Injection for Capillary Pressure (MICP). As oilfield development proceeds, water displaces some oil in the pore space. Since the injected water has higher salinity than reservoir water, formation resistivity (Rw) becomes lower. Based on the material balance theory, the variable multiple water injection material balance equation is established, and the equation set is established by combining the material balance equation with the Simandoux equation and the calculation formula of mixed water resistivity (Rwz). According to the rock electricity experiment under different salinity, the dynamic rock electricity parameters are used in the Simandoux equation, and the mixed water resistivity and modern day Sw after water flooding are solved iteratively under the original SW constraint. The displacement efficiency is calculated as the difference between Sw and modern day Sw. The proposed method was applied to 10 wells and improved the Sw accuracy by 5%-15%. The continuous solution Rw from our method matches Rw measured in the lab. The calculated displacement efficiency is compared with actual production history and the accuracy improved from 68% to 80%.


2021 ◽  
Vol 19 (1) ◽  
pp. 678-685
Author(s):  
Yong Liu ◽  
Fajun Zhao ◽  
Yongxin Wu ◽  
Tianxiao Xu ◽  
Guangmeng Zhu

Abstract This paper introduces a steam-foam drive profile modification technology for heavy oil development in Block Qi40 based on an in-depth study of the characteristics of heavy oil reservoir and cross flow characteristics of injected steam in Block Qi40 of Liaohe Oilfield. The performance evaluation was carried out indoors for foaming agents. Influencing factors affecting profile modification and foam injection mode selection are studied. The results show that the CX-4 foaming agent system has excellent foaming properties and foam stability at 300°C. The plugging pressure difference of core can be increased by more than 15 times at 240°C. When a 0.5 PV foaming agent system is injected, the oil displacement efficiency can reach more than 68%. The optimal concentration of the foaming agent is 0.5% and the change of resistance factor is the largest in the range of oil saturation between 15 and 20%. Foam has better plugging ability in high permeability and large pores. Furthermore, after field application effect analysis, it confirms that the steam-foam profile modification technology has an obvious effect on enhancing oil recovery.


Author(s):  
Ying-xian Liu ◽  
Jie Tan ◽  
Hui Cai ◽  
Gong-chang Wang ◽  
Song-ru Mou

AbstractThe heavy oil reservoir is a special kind of oil and gas reservoir that differs from the conventional reservoir in many ways. Due to the high viscosity of crude oil, it is not easy to recover. When the viscosity of underground crude oil exceeds 150 cp, the land heavy oil field is generally developed by thermal recovery. S.Z. oilfield is a heavy oil reservoir in the Bohai Sea, with surface crude oil viscosity of 3000–25,000 cp and underground crude oil viscosity of 400–1000 cp. Limited by offshore equipment, the development strategy of land oilfields can't be directly applied. High production capacity is obtained through the cold production development of horizontal branch experimental wells, and the water drive production capacity can reach 40–70 m3/day. At present, there is a lack of research on cold recovery development under the viscosity of crude oil. The existing primary research and common knowledge are challenging to support efficient development technology for effectively producing heavy oil reservoirs. In this paper, through physical simulation experiments, the phase behavior and rheological properties of crude oil in the target block are studied, and the rheological properties of crude oil are clarified. Then, the depletion production and water flooding experiments are carried out, and the displacement characteristics and laws of water flooding cold production are analyzed. Finally, the indoor experiments of water flooding sweep efficiency and oil displacement efficiency in the target block are carried out. Clear its micro and macro spread. It provides technical support for the effective production of offshore heavy oil fields.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 511-521
Author(s):  
V.. Mohan ◽  
P.. Neogi ◽  
B.. Bai

Summary The dynamics of a process in which a solvent in the form of a vapor or gas is introduced in a heavy-oil reservoir is considered. The process is called the solvent vapor-extraction process (VAPEX). When the vapor dissolves in the oil, it reduces its viscosity, allowing oil to flow under gravity and be collected at the bottom producer well. The conservation-of-species equation is analyzed to obtain a more-appropriate equation that differentiates between the velocity within the oil and the velocity at the interface, which can be solved to obtain a concentration profile of the solvent in oil. We diverge from an earlier model in which the concentration profile is assumed. However, the final result provides the rate at which oil is collected, which agrees with the previous model in that it is proportional to h, where h is the pay-zone height; in contrast, some of the later data show a dependence on h. Improved velocity profiles can capture this dependence. A dramatic increase in output is seen if the oil viscosity decreases in the presence of the solvent, although the penetration of the solvent into the oil is reduced because under such conditions the diffusivity decreases with decreased solvent. One other important feature we observe is that when the viscosity-reducing effect is very large, the recovered fluid is mainly solvent. Apparently, some optimum might exist in the solubility φo, where the ratio of oil recovered to solvent lost is the largest. Finally, the present approach also allows us to show how the oil/vapor interface evolves with time.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


Sign in / Sign up

Export Citation Format

Share Document