Fragments of the oceanic crust in the junction zone between the Zverevskii and Stanovoi complexes in the southeastern margin of the North Asian Craton

2014 ◽  
Vol 455 (1) ◽  
pp. 270-273 ◽  
Author(s):  
I. V. Buchko ◽  
A. A. Sorokin
2012 ◽  
Vol 445 (2) ◽  
pp. 947-950 ◽  
Author(s):  
A. A. Sorokin ◽  
A. P. Sorokin ◽  
V. A. Ponomarchuk ◽  
Yu. A. Martynov ◽  
A. M. Larin ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 13-27
Author(s):  
M. V. Goroshko ◽  
B. F. Shevchenko ◽  
V. A. Guryanov ◽  
G. Z. Gil’manova

2014 ◽  
Vol 458 (2) ◽  
pp. 1230-1235 ◽  
Author(s):  
A. A. Sorokin ◽  
A. V. Ponomarchuk ◽  
A. V. Travin ◽  
V. A. Ponomarchuk ◽  
K. D. Vakhtomin

2009 ◽  
Vol 4 ◽  
pp. 201-221 ◽  
Author(s):  
S. D. Sokolov ◽  
G. Ye. Bondarenko ◽  
P. W. Layer ◽  
I. R. Kravchenko-Berezhnoy

Abstract. Geochronologic and structural data from the terranes of the South Anyui suture zone record a protracted deformational history before, during and after an Early Cretaceous collision of the passive margin of the Chukotka-Arctic Alaska continental block with the active continental margin of the North Asian continent. Preceding this collision, the island arc complexes of the Yarakvaam terrane on the northern margin of the North Asian craton record Early Carboniferous to Neocomian ages in ophiolite, sedimentary, and volcanic rocks. Triassic to Jurassic amphibolites constrain the timing of subduction and intraoceanic deformation along this margin. The protracted (Neocomian to Aptian) collision of the Chukotka passive margin with the North Asian continent is preserved in a range of structural styles including first north verging folding, then south verging folding, and finally late collisional dextral strike slip motions which likely record a change from orthogonal collision to oblique collision. Due to this collision, the southern passive margin of Chukotka was overthrust by tectonic nappes composed of tectono-stratigraphic complexes of the South Anyui terrane. Greenschists with ages of 115–119 Ma are related to the last stages of this collision. The postcollisional orogenic stage (Albian to Cenomanian) is characterized by sinistral strike slip faults and an extensional environment.


1992 ◽  
Vol 29 (6) ◽  
pp. 1296-1304 ◽  
Author(s):  
Philippe Erdmer

Until recently, the Nisutlin allochthonous assemblage, a part of the Yukon–Tanana composite terrane interpreted as trench mélange from a late Paleozoic – Mesozoic arc system, was the only tectonic assemblage known to include subducted material in the northern Cordillera. The discovery of eclogitic rocks in two parts of a klippe of the Anvil allochthonous assemblage, which comprises mafic ophiolitic rocks, above the Cassiar terrane west of the Tintina fault confirms other evidence that subducted oceanic crust was also returned to the surface. The eclogitic rocks have been largely retrograded by postsubduction metamorphism. Their existence is interpreted as additional evidence of the link between nappes above the Cassiar terrane and their inferred root, the Teslin suture zone. The Nisutlin and Anvil allochthonous assemblages can now be interpreted, not simply as crustally metamorphosed assemblages with minor, structurally interleaved high-pressure components, but as deeply metamorphosed and intensely strained slices of continental and oceanic crust switched from subducting slab to overriding plate and returned to the surface during collision of the arc with the North American margin.


Author(s):  
Johannes Rembe ◽  
Renjie Zhou ◽  
Edward R. Sobel ◽  
Jonas Kley ◽  
Chen Jie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document