continental block
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Chen Zhao ◽  
Jian Zhang ◽  
Guochun Zhao ◽  
Changqing Yin ◽  
Guokai Chen ◽  
...  

The debate on the role of vertical versus horizontal tectonism in Archean cratons is intimately linked to the initiation of plate tectonics. The dome-and-keel architecture has been considered as a consequence of vertical tectonism. Although such a structural pattern is documented in some Mesoarchean and older cratons, such as the Kaapvaal and Pilbara cratons, whether it also occurs in Neoarchean cratons is poorly constrained. Determining the kinematics, structural evolution, and the timing of these structures is crucial in understanding how the tectonic behavior operated during the evolution of the early Earth. The North China Craton, especially its eastern part, is a Neoarchean continental block and preserves typical greenstone-granite rock assemblages. Detailed structural mapping reveals that the Anziling area (east China) is characterized by a typical dome structure without significant reworking by later deformation. The dome is in tectonic contact with a supracrustal rock assemblage that is now the dip-slip Shuangshanzi ductile shear zone. In the supracrustal rocks, compositional layers are folded into upright isoclinal folds. Meanwhile, along the shear zone, foliation varies from NNW to SW with sub-vertical dip. Mineral stretching lineations indicate a sinistral shear sense with a slightly oblique-slip component in the north, but show NWW-directed and SW-directed steep dip-slip shear in the west and south, respectively. Kinematic indicators imply that the granitic dome formed through a vertically upward movement accompanied by an uneven clockwise rotation. The supracrustal rocks sank downwards to form the regional keel structure. Structural data suggests that the Anziling area is a typical dome-and-keel structure. U-Pb zircon dating on pre-, syn-, and post-tectonic dykes indicate that the dome-and-keel structure formed at 2530−2500 Ma, and was intimately related to the emplacement of tonalite-trondhjemite-granodiorite granitoids. New data from this study suggest that until the late Neoarchean, the vertical tectonism was still a dominant tectonic regime that was operating in the eastern North China Craton.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Waldemar Żak

Information is considered one of the main factors of the current geopolitical dynamics. The information paradigm of geopolitics defines the canons of conquest and control of a global information space, as well as the nature of the relationship between geopolitical actors. It covers a range of issues related to geographic information policy, which includes the activities aimed at increasing the power of State information, including in the media. Helping people understand the changing world order has become the main goal of mass media. In an emerging global information field, the media no longer divide events into domestic and foreign ones. Russia’s propaganda offensive is a carefully prepared strategy. The country built an array of soft power instruments and transformed them into effective weapons in a new information war with the West. Initially intended as a tool to enhance Russia’s soft power, it quickly developed into one of the main instruments of Russia’s new imperialism. The minimum task may be the integration of part of the post-Soviet space, whereas the maximum task is to unite civilizations into a single Eurasian continental block in order to restore civilization balance


Geology ◽  
2021 ◽  
Author(s):  
R.E. Turnbull ◽  
J.J. Schwartz ◽  
M.L. Fiorentini ◽  
R. Jongens ◽  
N.J. Evans ◽  
...  

We present a data set of >1500 in situ O-Hf-U-Pb zircon isotope analyses that document the existence of a concealed Rodinian lithospheric keel beneath continental Zealandia. The new data reveal the presence of a distinct isotopic domain of Paleozoic–Mesozoic plutonic rocks that contain zircon characterized by anomalously low δ18O values (median = +4.1‰) and radiogenic εHf(t) (median = +6.1). The scale (>10,000 km2) and time span (>>250 m.y.) over which plutonic rocks with this anomalously low-δ18O signature were emplaced appear unique in a global context, especially for magmas generated and emplaced along a continental margin. Calculated crustal-residence ages (depleted mantle model, TDM) for this low-δ18O isotope domain range from 1300 to 500 Ma and are interpreted to represent melting of a Precambrian lithospheric keel that was formed and subsequently hydrothermally altered during Rodinian assembly and rifting. Recognition of a concealed Precambrian lithosphere beneath Zealandia and the uniqueness of the pervasive low-δ18O isotope domain link Zealandia to South China, providing a novel test of specific hypotheses of continental block arrangements within Rodinia.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Maren Vormann ◽  
Wilfried Jokat

AbstractThe East African margin between the Somali Basin in the north and the Natal Basin in the south formed as a result of the Jurassic/Cretaceous dispersal of Gondwana. While the initial movements between East and West Gondwana left (oblique) rifted margins behind, the subsequent southward drift of East Gondwana from 157 Ma onwards created a major shear zone, the Davie Fracture Zone (DFZ), along East Africa. To document the structural variability of the DFZ, several deep seismic lines were acquired off northern Mozambique. The profiles clearly indicate the structural changes along the shear zone from an elevated continental block in the south (14°–20°S) to non-elevated basement covered by up to 6-km-thick sediments in the north (9°–13°S). Here, we compile the geological/geophysical knowledge of five profiles along East Africa and interpret them in the context of one of the latest kinematic reconstructions. A pre-rift position of the detached continental sliver of the Davie Ridge between Tanzania/Kenya and southeastern Madagascar fits to this kinematic reconstruction without general changes of the rotation poles.


2021 ◽  
Author(s):  
Salvatore Critelli ◽  
Sara Criniti

The sandstone composition of foreland basin has a wide range of provenance signatures, reflecting the interplay between flexed underplate region and abrupt growth of the accreted upper plate region. The combination of contrasting detrital signatures reflects these dual plate interactions; indeed, several cases figure out that the earliest history of older foreland basin infilling is marked by quartz-rich sandstones, with cratonal or continental-block provenance of the flexed underplate flanks. As upper plate margin grows over the underplate, the nascent fold-and-thrust belt starts to be the main producer of grain particles, reflecting the space/time dependent progressive unroofing of the subjacent orogenic source terranes. The latter geodynamic processes are mainly reflected in the nature of sandstone compositions that become more lithic fragment-rich and feldspar-rich as the fold-thrust belt involves the progressive deepest portions of upper plate crustal terranes. In this context sandstone signatures reflect quartzolithic to quartzofeldspathic compositions.


2021 ◽  
Vol 12 (1) ◽  
pp. 76-83
Author(s):  
S. V. Efremov ◽  
A. V. Travin

The 40Ar/39Ar dating of ultrapotassic rocks from Central Chukotka shows that these rocks are Early Cretaceous, and yields a narrow range of age variations (109 to 107 Ma), which correlates fairly well with the range of age variations of granitoids typical of the study area (117–105 Ma). There are thus grounds to suggest that the ultrapotassic magmas and granitoids resulted from the same geological process that can be identified from the material characteristics of the ultrapotassic magmas.In the modern concepts of the regional geological development, the formation of the granitoid and ultrapotassic magmas can be related to the continental lithosphere extension due to the collision of Eurasian plate and the Chukotka – Arctic Alaska continental block.Using modern genetic models based on the interpretations of the material characteristics of ultrapotassic magmas, it is possible to limit the number of genetic hypotheses and to relate the continental lithosphere extension to the processes that took place in the upper mantle of the study area.


Author(s):  
P Sketsiou ◽  
L De Siena ◽  
S Gabrielli ◽  
F Napolitano

Summary The Pollino range is a region of slow deformation where earthquakes generally nucleate on low-angle normal faults. Recent studies have mapped fault structures and identified fluid-related dynamics responsible for historical and recent seismicity in the area. Here, we apply the coda-normalization method at multiple frequencies and scales to image the 3D P-wave attenuation (QP) properties of its slowly-deforming fault network. The wide-scale average attenuation properties of the Pollino range are typical for a stable continental block, with a dependence of QP on frequency of $Q_P^{-1}=(0.0011\pm 0.0008) f^{(0.36\pm 0.32)}$. Using only waveforms comprised in the area of seismic swarms, the dependence of attenuation on frequency increases ($Q_P^{-1}=(0.0373\pm 0.0011) f^{(-0.59\pm 0.01)}$), as expected when targeting seismically-active faults. A shallow very-low-attenuation anomaly (max depth of 4-5 km) caps the seismicity recorded within the western cluster 1 of the Pollino seismic sequence (2012, maximum magnitude MW = 5.1). High-attenuation volumes below this anomaly are likely related to fluid storage and comprise the western and northern portions of cluster 1 and the Mercure basin. These anomalies are constrained to the NW by a sharp low-attenuation interface, corresponding to the transition towards the eastern unit of the Apennine Platform under the Lauria mountains. The low-seismicity volume between cluster 1 and cluster 2 (maximum magnitude MW = 4.3, east of the primary) shows diffuse low-to-average attenuation features. There is no clear indication of fluid-filled pathways between the two clusters resolvable at our resolution. In this volume, the attenuation values are anyway lower than in recognized low-attenuation blocks, like the Lauria Mountain and Pollino Range. As the volume develops in a region marked at surface by small-scale cross-faulting, it suggests no actual barrier between clusters, more likely a system of small locked fault patches that can break in the future. Our model loses resolution at depth, but it can still resolve a 5-to-15-km-deep high-attenuation anomaly that underlies the Castrovillari basin. This anomaly is an ideal deep source for the SE-to-NW migration of historical seismicity. Our novel deep structural maps support the hypothesis that the Pollino sequence has been caused by a mechanism of deep and lateral fluid-induced migration.


2021 ◽  
Author(s):  
Cecilia Morales-Ocaña ◽  
Fernando Bohoyo ◽  
Carlota Escutia ◽  
Carlos Marín-Lechado ◽  
María Druet ◽  
...  

<p>The South Orkney Microcontinent (SOM) is located in the central sector of the South Scotia Arc, at the Weddell Sea northern edge. The SOM is the largest continental block in the southern Scotia Arc with a surface of more than 70.000 km<sup>2</sup>. Its current location is the result of the continental break-up from the Antarctic Peninsula related to the Powell Basin opening, considered one of the first steps in the formation of the Drake Passage during the Eocene-Oligocene.</p><p>In this work we present a 3D geological model of the SOM built with Geomodeller® using free-air gravity anomaly data from Topex and magnetic data from WDMAM. To obtain a reliable result, some constrains have been taken into account: (1) GEBCO data are used to establish the bathymetric level, (2) basement depth and geometry is calculated from multi-channel seismic profiles over the study area obtained from the Seismic Data Library System (SDLS), and (3) the analytic signal of total field magnetic anomalies has been used to limit the extension of the bodies that cause the PMA (Pacific Margin Anomaly).</p><p>All these data, together with additional geological and geophysical interpretation, have allowed to build the 3D model. The characterization of the sedimentary basins shape, the deep crust structure and Moho geometry, the volume of the magnetic bodies and the nature and geometry of the SOM margins will provide a better understanding of the complex SOM structure resulting from different tectonic phases since the Mesozoic and related to the Scotia-Drake opening.</p><p>The preliminary result shows a good fit between the observed and calculated gravimetric anomaly. We are currently working on the gravimetric inversion to obtain an optimal adjustment.</p>


2021 ◽  
Author(s):  
Majid Soleymani ◽  
Shojaeddin Niroomand ◽  
Abdorrahman Rajabi ◽  
Thomas Monecke ◽  
Soroush Modabberi

<p>The Late Cretaceous to Eocene Sistan suture zone in southeastern Iran separates the Lut continental block in the west from the Afghan continental block in the east. A major belt of Oligocene to Miocene igneous rocks occurs between the cities of Zahedan and Nehbandan, stretching for ~200 km from south to north parallel to the border with Pakistan and Afghanistan. Known porphyry Cu mineralization is associated with the intrusions and intrusive complexes at Kuh-e Janja (16.5+2.0 Ma), Kuh-e Seyasteragi (19.2+ 1.4 Ma), Kuh-e Assagie (27.5+2.0 Ma), and Kuh-e Lar (32.8+3.0 Ma).</p><p>Small intrusions and intrusive complexes in the Zahedan-Nehbandan magmatic belt are mostly intermediate to felsic in composition and have calc-alkaline or shoshonitic affinities. Associated volcanic and volcaniclastic rocks are common. The igneous rocks are hosted by deformed late Cretaceous to Eocene flysch sequences that formed in the Sefidabeh forearc basin developed during the subduction and closure of the Sistan ocean. The geochemical composition of the intrusive rocks and their ages suggest that igneous activity and related mineralization in the Zahedan-Nehbandan magmatic belt may have formed as a result of post-collisional processes. The locations of the intrusive centers in the Kuh-e Assagie and Kuh-e Lar may be controlled by strike-slip faults, which are major post-collisional structures.</p><p>The recent discovery of the Janja porphyry Cu-Au-Mo deposit below Quaternary alluvial terraces highlights the exploration potential of the Zahedan-Nehbandan magmatic belt. In addition to post-collisional porphyry deposits, other deposit types such as skarns, polymetallic veins, or epithermal deposits may be hidden below the regionally extensive Quaternary cover.</p>


2021 ◽  
Author(s):  
S. Van Simaeys ◽  
M. Sullivan ◽  
I. Fabuel-Perez ◽  
M. Abdelfattah Mohamed Khalil

Sign in / Sign up

Export Citation Format

Share Document