Global Climate Change and the Temperature Regime of the Mesozoic Marine Environment in Northeastern Asia

2018 ◽  
Vol 482 (1) ◽  
pp. 1147-1151
Author(s):  
V. S. Vishnevskaya ◽  
N. I. Filatova
2009 ◽  
Vol 66 (7) ◽  
pp. 1640-1646 ◽  
Author(s):  
Kelley D. Higgason ◽  
Maria Brown

Abstract Higgason, K. D., and Brown, M. 2009. Local solutions to manage the effects of global climate change on a marine ecosystem: a process guide for marine resource managers. – ICES Journal of Marine Science, 66: 1640–1646. The marine environment plays an important role in controlling the amount of CO2 that remains within the earth’s atmosphere, but it has not received as much attention as the terrestrial environment regarding climate-change effects, mitigation programmes, and action plans. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in winds that drive upwelling and ocean circulation patterns, increasing global sea surface temperatures, and sea level rise, can result in dramatic changes within marine and coastal ecosystems. Often, marine resource managers feel overwhelmed by the magnitude of this issue and are therefore uncertain how to begin to take action. It may seem that they do not have the time, funding, or staff to take on a challenge as large as climate change, and fail to act as a result. Using NOAA’s Gulf of the Farallones National Marine Sanctuary as a case study, this paper outlines the need to act now and presents an easy-to-use process guide, providing managers options to incorporate effectively the influences of climate change into management strategies, as well as mitigate these influences through community outreach and a reduction in workplace emissions.


2010 ◽  
Vol 23 ◽  
pp. 17-24 ◽  
Author(s):  
C. Giannakopoulos ◽  
P. Hadjinicolaou ◽  
E. Kostopoulou ◽  
K. V. Varotsos ◽  
C. Zerefos

Abstract. In this study, the impact of global climate change on the temperature and precipitation regime over the island of Cyprus has been investigated. The analysis is based on daily output from a regional climate model (RCM) at a high horizontal resolution (25 km) produced within the framework of the EU-funded ENSEMBLES project. The control run represents the base period 1961–1990 and is used here as reference for comparison with future predictions. Two future periods are studied, 2021–2050 and 2071–2100. For the study area and over the study period, an analysis of the changes associated with the temperature regime and the hydrological cycle, such as mean precipitation and drought duration, is presented. Variations in the mean annual and seasonal rainfall are presented. Changes in the number of hot days/warm nights as well as drought duration are also discussed. These changes should be very important to assess future possible water shortages over the island and to provide a basis for associated impacts on the agricultural sector.


2009 ◽  
Author(s):  
Marci Culley ◽  
Holly Angelique ◽  
Courte Voorhees ◽  
Brian John Bishop ◽  
Peta Louise Dzidic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document