On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability

2014 ◽  
Vol 24 (2) ◽  
pp. 196-208 ◽  
Author(s):  
I. Yu. Torshin ◽  
K. V. Rudakov
Author(s):  
Leilei Lin ◽  
Lijie Wen ◽  
Li Lin ◽  
Jisheng Pei ◽  
Hedong Yang

2015 ◽  
Vol 8 (2) ◽  
pp. 296-305 ◽  
Author(s):  
NISSIM FRANCEZ

AbstractThe paper proposes an extension of the definition of a canonical proof, central to proof-theoretic semantics, to a definition of a canonical derivation from open assumptions. The impact of the extension on the definition of (reified) proof-theoretic meaning of logical constants is discussed. The extended definition also sheds light on a puzzle regarding the definition of local-completeness of a natural-deduction proof-system, underlying its harmony.


2012 ◽  
Vol 64 (4) ◽  
pp. 822-844 ◽  
Author(s):  
J. Haglund ◽  
J. Morse ◽  
M. Zabrocki

Abstract We introduce a q, t-enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory ∇ operator applied to a Hall–Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the “shuffle conjecture” (Duke J. Math. 126 (2005), pp. 195 − 232) for ∇ en[X]. We bring to light that certain generalized Hall–Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of q, t-Catalan sequences, and we prove a number of identities involving these functions.


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


1992 ◽  
Vol 86 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Flavio Bonetti ◽  
Gian-Carlo Rota ◽  
Domenico Senato ◽  
Antonietta M. Venezia

Author(s):  
C.V Sukumar ◽  
Andrew Hodges

We study the structure of a quantum algebra in which a parity-violating term modifies the standard commutation relation between the creation and annihilation operators of the simple harmonic oscillator. We discuss several useful applications of the modified algebra. We show that the Bernoulli and Euler numbers arise naturally in a special case. We also show a connection with Gaussian and non-Gaussian squeezed states of the simple harmonic oscillator. Such states have been considered in quantum optics. The combinatorial theory of Bernoulli and Euler numbers is developed and used to calculate matrix elements for squeezed states.


Sign in / Sign up

Export Citation Format

Share Document