Use of Sentinel-1 Dual Polarization Multi-Temporal Data with Gray Level Co-Occurrence Matrix Textural Parameters for Building Damage Assessment

2021 ◽  
Vol 31 (2) ◽  
pp. 240-250
Author(s):  
Asset Akhmadiya ◽  
Nabi Nabiyev ◽  
Khuralay Moldamurat ◽  
Kanagat Dyussekeyev ◽  
Sabyrzhan Atanov
Author(s):  
Gianfranco Nicodemo ◽  
Dario Peduto ◽  
Settimio Ferlisi

Abstract. Buildings in subsiding areas may suffer from settlements causing damages of different severity levels with high impact in terms of yearly economic losses. In these contexts, a systematic damage assessment jointly with continuous monitoring of relevant parameters (e.g. settlements exhibited by points located on the roof) can be extremely useful to control the building behaviour and develop forecasting models. In this regard, the paper presents the results of an integrated analysis carried out on a subsidence-affected urban area in the Netherlands where the availability of multi-temporal building damage surveys and a long DInSAR monitoring dataset allowed both retrieving quantitative empirical relationships between the cause (magnitude of the selected intensity parameter, IP) and the effect (recorded damage severity level, DL) and generating empirical fragility and vulnerability curves. The results pointed out the importance of considering the exact dating of the onset of building damage and the corresponding magnitude of the considered IP in the generation of quantitative forecasting models.


2012 ◽  
Vol 31 (6) ◽  
pp. 1628-1630
Author(s):  
Jia-jia OU ◽  
Bi-ye CAI ◽  
Bing XIONG ◽  
Feng LI

2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


2021 ◽  
Vol 13 (5) ◽  
pp. 905
Author(s):  
Chuyi Wu ◽  
Feng Zhang ◽  
Junshi Xia ◽  
Yichen Xu ◽  
Guoqing Li ◽  
...  

The building damage status is vital to plan rescue and reconstruction after a disaster and is also hard to detect and judge its level. Most existing studies focus on binary classification, and the attention of the model is distracted. In this study, we proposed a Siamese neural network that can localize and classify damaged buildings at one time. The main parts of this network are a variety of attention U-Nets using different backbones. The attention mechanism enables the network to pay more attention to the effective features and channels, so as to reduce the impact of useless features. We train them using the xBD dataset, which is a large-scale dataset for the advancement of building damage assessment, and compare their result balanced F (F1) scores. The score demonstrates that the performance of SEresNeXt with an attention mechanism gives the best performance, with the F1 score reaching 0.787. To improve the accuracy, we fused the results and got the best overall F1 score of 0.792. To verify the transferability and robustness of the model, we selected the dataset on the Maxar Open Data Program of two recent disasters to investigate the performance. By visual comparison, the results show that our model is robust and transferable.


2021 ◽  
pp. 1-14
Author(s):  
Zuleyma Zarco-González ◽  
Octavio Monroy-Vilchis ◽  
Xanat Antonio-Némiga ◽  
Angel Rolando Endara-Agramont

Sign in / Sign up

Export Citation Format

Share Document