Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of Mochulya Bog, Kaluga Oblast, Russia

2021 ◽  
Vol 48 (7) ◽  
pp. 938-949
Author(s):  
A. N. Tsyganov ◽  
A. A. Komarov ◽  
N. G. Mazei ◽  
T. V. Borisova ◽  
E. Yu. Novenko ◽  
...  
2019 ◽  
Vol 241 ◽  
pp. 558-566 ◽  
Author(s):  
Cecilia María Armas-Herrera ◽  
Fernando Pérez-Lambán ◽  
David Badía-Villas ◽  
José Luis Peña-Monné ◽  
José Antonio González-Pérez ◽  
...  

2021 ◽  
Author(s):  
Yicheng Shen ◽  
Luke Sweeney ◽  
Mengmeng Liu ◽  
Jose Antonio Lopez Saez ◽  
Sebastián Pérez-Díaz ◽  
...  

Abstract. Charcoal accumulated in lake, bog or other anoxic sediments through time has been used to document the geographical patterns in changes in fire regimes. Such reconstructions are useful to explore the impact of climate and vegetation changes on fire during periods when the human influence was less prevalent than today. However, charcoal records only provide semi-quantitative estimates of change in biomass burning. Here we derive quantitative estimates of burnt area from vegetation data in two stages. First, we relate the modern charcoal abundance to burnt area using a conversion factor derived from a generalized linear model of burnt area probability based on eight environmental predictors. Then, we establish the relationship between fossil pollen assemblages and burnt area using Tolerance-weighted Weighted Averaging Partial Least-Squares with sampling frequency correction (fxTWA-PLS). We test this approach using the Iberian Peninsula as a case study because it is a fire-prone region with abundant pollen and charcoal records covering the Holocene. We derive the vegetation-burnt area relationship using the 29 records that have both modern and fossil charcoal and pollen data, and then reconstruct palaeo-burnt area for the 114 records with Holocene pollen records. The pollen data predict charcoal abundances through time relatively well (R2 = 0.47) and the changes in reconstructed burnt area are synchronous with known climate changes through the Holocene. This new method opens up the possibility of reconstructing changes in fire regimes quantitatively from pollen records, which are far more numerous than charcoal records.


2017 ◽  
Author(s):  
Jack Longman ◽  
Daniel Veres ◽  
Vasile Ersek ◽  
Ulrich Salzmann ◽  
Katalin Hubay ◽  
...  

Abstract. Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (XRF core scanning) and quantitative (ICP-OES) measurements of lithogenic (Fe, K, Si, Ti) elements, we identify 11 periods of major dust deposition between: 9500–9100, 8400–8100, 7720–7250, 6350–6000, 5450–5050, 4130–3770, 3450–2850, 2100–1450, 800–620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimate conditions. Our record highlights several discrepancies between eastern and western European dust depositional records, and the impact of highly complex hydrological regimes in the Carpathian region. After 6100 cal yr BP, we find that the geochemical indicators of dust flux become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest this is indicative of a shift in dust provenance from local/regional (likely loess-related) to distal (Saharan) sources which coincide with the end of the African Humid Period and the onset of Saharan desertification.


2004 ◽  
Author(s):  
Pavel M. Dolukhanov ◽  
◽  
Anvar M. Shukurov ◽  
Kh.A. Arslanov ◽  
A.N. Mazurkevich ◽  
...  

2018 ◽  
Vol 493 ◽  
pp. 31-38 ◽  
Author(s):  
Shiwei Jiang ◽  
Wuhong Luo ◽  
Luyao Tu ◽  
Yanyan Yu ◽  
Fang Fang ◽  
...  

2015 ◽  
Vol 83 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Elena Yu. Novenko ◽  
Andrey N. Tsyganov ◽  
Elena M. Volkova ◽  
Kirill V. Babeshko ◽  
Nikita V. Lavrentiev ◽  
...  

Holocene climatic variability and human impact on vegetation are reconstructed from a region in central European Russia, which lies at an important ecotone between broadleaf forest and steppe. For the first time in this region we adopt a multi-proxy approach that combines analysis of local mire conditions from plant macrofossil and testate amoeba analyses with pollen-based quantitative climate reconstruction. The proxies indicate a long-term warming trend from 9700 to 7500 cal yr BP, interrupted by a series of short-term cold events. From 7500 to 5000 cal yr BP the results imply a relatively stable climate, warmer and drier than present, spanning the Holocene Thermal Maximum. Since 5000 cal yr BP the data suggest a change to cooler climate, but with centennial-scale variability. This shift at around 5000 cal yr BP is supported by extensive evidence from other sites. In the early Holocene, the region was occupied mainly by pine and birch forests. Broad-leafed forests of oak, lime and elm expanded after 7800 cal yr BP and remained dominant until the last few centuries. During the historical period, vegetation changes have been driven mainly by human activities.


Sign in / Sign up

Export Citation Format

Share Document