Evaluation of Additional Iron Recovery from Iron Ore Tailings

2017 ◽  
Vol 53 (3) ◽  
pp. 559-564 ◽  
Author(s):  
E. K. Yakubailik ◽  
A. D. Balaev ◽  
I. M. Ganzhenko
Author(s):  
I. Mitov ◽  
A. Stoilova ◽  
B. Yordanov ◽  
D. Krastev

SYNOPSIS We present three technological scenarios for the recovery of valuable components from gangue, stored in the tailings dam at Kremikovtzi metallurgical plant in Bulgaria, into marketable iron-containing pellets. In the first approach the iron concentrate was recovered through a two-stage flotation process, desliming, and magnetic separation. In the second proposed process, the iron concentrate was subjected to four sequential stages of magnetic separation coupled with selective magnetic flocculation. The third route entails the not very common practice of magnetizing roasting, followed by selective magnetic flocculation, desliming, and magnetic separation. The iron concentrate was pelletized in a laboratory-scale pelletizer. Each technology has been assessed with regard to the mass yield of iron concentrate, the iron recovery. and the iron, lead, and zinc content in order to identify the most effective route. Keywords: tailings reprocessing, magnetizing roasting, pelletization.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 232 ◽  
Author(s):  
Chang Tang ◽  
Keqing Li ◽  
Wen Ni ◽  
Duncheng Fan

Iron ore tailings (IOTs) are a form of solid waste produced during the beneficiation process of iron ore concentrate. In this paper, iron recovery from IOTs was studied at different points during a process involving pre-concentration followed by direct reduction and magnetic separation. Then, slag-tailing concrete composite admixtures were prepared from high-silica residues. Based on the analyses of the chemical composition and crystalline phases, a pre-concentration test was developed, and a pre-concentrated concentrate (PC) with an iron grade of 36.58 wt % and a total iron recovery of 83.86 wt % was obtained from a feed iron grade of 12.61 wt %. Furthermore, the influences of various parameters on iron recovery from PC through direct reduction and magnetic separation were investigated. The optimal parameters were found to be as follows: A roasting temperature of 1250 °C, a roasting time of 50 min, and a 17.5:7.5:12.5:100 ratio of bitumite/sodium carbonate/lime/PC. Under these conditions, the iron grade of the reduced iron powder was 92.30 wt %, and the iron recovery rate was 93.96 wt %. With respect to the original IOTs, the iron recovery was 78.79 wt %. Then, highly active slag-tailing concrete composite admixtures were prepared using the high-silica residues and S75 blast furnace slag powder. When the amount of high-silica residues replacing slag was 20%, the strength of cement mortar blocks at 7 days and 28 days was 33.11 MPa and 50 MPa, respectively, whereas the activity indices were 89 and 108, respectively. Meanwhile, the fluidity rate was appropriately 109. When the content of high-silica residues replacing slag was not more than 30%, the quality of mineral admixtures was not reduced. Last but not least, reusing the high-silica residues during iron recovery enabled the complete utilization of the IOTs.


2018 ◽  
Vol 42 (3) ◽  
pp. 453-466
Author(s):  
Wei WANG ◽  
Pengfei YE ◽  
Xiaoli ZHOU ◽  
C WANG ◽  
Zekun HUO ◽  
...  

2021 ◽  
Vol 171 ◽  
pp. 112725
Author(s):  
Eduardo Schettini Costa ◽  
Renata Caiado Cagnin ◽  
Cesar Alexandro da Silva ◽  
Cybelle Menolli Longhini ◽  
Fabian Sá ◽  
...  

2021 ◽  
Vol 759 ◽  
pp. 143456
Author(s):  
Vítor Otacílio de Almeida ◽  
Talita Carneiro Brandão Pereira ◽  
Lilian de Souza Teodoro ◽  
Manuella Escobar ◽  
Carolina Junqueira Ordovás ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document