magnetizing roasting
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 1 (7) ◽  
pp. 55-68
Author(s):  
Iurii N. Lopatin ◽  
◽  
Anton A. Mushketov ◽  
Elena G. Dmitrieva ◽  
◽  
...  

Introduction. Currently, the main raw materials for the production of cast iron and steel at metallurgical plants are iron concentrates obtained from magnetite (ferrous) quartzites, titanium-magnetite, and skarn ores. The existing technologies for processing these types of ores, which mainly include separation processes based on magnetic properties, size, separating of equally falling grains, and surface wettability allow us to produce both ordinary iron concentrates and high quality ones. The use of such schemes in the processing of brown iron ore does not allow obtaining high rates of mineral concentration. One of the methods for processing this type of ore is a roasting-magnetic scheme, which allows converting weakly magnetic (non-magnetic) forms of iron into strongly magnetic ones. Research objective is to develop the mode of magnetizing roasting of brown iron ore, technology of concentrating of the burn-out product in order to obtain iron concentrate and oxide pellets. Methods of research. The duration of heat treatment of the charge consisting of iron ore from the Abail deposit and coal from the Ekibastuz deposit and the required mass fraction of solid carbon contained in the coal are determined. Technological studies of the roasted product were carried out in order to obtain a concentrate with a mass fraction of iron at least 67%. According to the developed technology, a batch of iron concentrate was developed in order to obtain and study raw and oxide pellets. Results. The modes of magnetizing roasting of brown iron ore from the Abail deposit and cooling of the roasted material have been developed. A scheme for mineral processing of the roasted material has been developed in order to obtain a concentrate with at least 67% of iron mass fraction. The process of obtaining strong raw and roasted pellets from iron concentrate is studied. Conclusions. The developed mode of magnetizing roasting of the charge consisting of coal and ore from the Abail deposit makes it possible to obtain a roasted product with a degree of magnetization of 93%. The using of desliming of the roasted product makes it possible to remove magnetic floccules from the processing that reduce the concentrate quality, and to obtain a concentrate with a mass fraction of iron of at least 67% in the last stage of magnetic separation. From the iron concentrate, it is possible to obtain oxidized pellets with a strength of at least 200 kg/pellet at temperature of pellets firing of 1325 °C.


2021 ◽  
Vol 166 ◽  
pp. 106826
Author(s):  
V. Nunna ◽  
S. Hapugoda ◽  
M.I. Pownceby ◽  
G.J. Sparrow

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 701
Author(s):  
Yan Zhou ◽  
Shizhe Song ◽  
Jianxing Liu ◽  
Gongjin Cheng ◽  
He Yang ◽  
...  

Due to the advantage in deactivating fluorine and enhancing the decomposition of rare earth (RE) minerals, MgO was applied to the magnetizing roasting of Bayan Obo tailings in this work. The effects of MgO dosages, roasting temperature, and holding time on the decomposition rate of RE minerals were experimentally studied. With a MgO dosage of 10 wt.%, the decomposition rate of RE minerals reached 98.09% at 750 °C. The phase composition of roasted samples was characterized by XRD and SEM-EDS. The incomplete decomposition rate was investigated with the observation of leaching residual by SEM-EDS. The decomposition kinetics of the RE minerals with the addition of MgO was analyzed with the Ginstling-Brundshtein model, where the reaction rate was controlled by chemical reaction.


Author(s):  
I. Mitov ◽  
A. Stoilova ◽  
B. Yordanov ◽  
D. Krastev

SYNOPSIS We present three technological scenarios for the recovery of valuable components from gangue, stored in the tailings dam at Kremikovtzi metallurgical plant in Bulgaria, into marketable iron-containing pellets. In the first approach the iron concentrate was recovered through a two-stage flotation process, desliming, and magnetic separation. In the second proposed process, the iron concentrate was subjected to four sequential stages of magnetic separation coupled with selective magnetic flocculation. The third route entails the not very common practice of magnetizing roasting, followed by selective magnetic flocculation, desliming, and magnetic separation. The iron concentrate was pelletized in a laboratory-scale pelletizer. Each technology has been assessed with regard to the mass yield of iron concentrate, the iron recovery. and the iron, lead, and zinc content in order to identify the most effective route. Keywords: tailings reprocessing, magnetizing roasting, pelletization.


Sign in / Sign up

Export Citation Format

Share Document