scholarly journals Technological research on converting iron ore tailings into a marketable product

Author(s):  
I. Mitov ◽  
A. Stoilova ◽  
B. Yordanov ◽  
D. Krastev

SYNOPSIS We present three technological scenarios for the recovery of valuable components from gangue, stored in the tailings dam at Kremikovtzi metallurgical plant in Bulgaria, into marketable iron-containing pellets. In the first approach the iron concentrate was recovered through a two-stage flotation process, desliming, and magnetic separation. In the second proposed process, the iron concentrate was subjected to four sequential stages of magnetic separation coupled with selective magnetic flocculation. The third route entails the not very common practice of magnetizing roasting, followed by selective magnetic flocculation, desliming, and magnetic separation. The iron concentrate was pelletized in a laboratory-scale pelletizer. Each technology has been assessed with regard to the mass yield of iron concentrate, the iron recovery. and the iron, lead, and zinc content in order to identify the most effective route. Keywords: tailings reprocessing, magnetizing roasting, pelletization.

2013 ◽  
Vol 826 ◽  
pp. 102-105
Author(s):  
Ji Wei Lu ◽  
Nai Ling Wang ◽  
Wan Zhong Yin ◽  
Rui Chao Zhao ◽  
Chuang Yuan

For the middlings (containing siderite) separated from Dong Anshan carbonaceous iron ore which was dressed by a two-step flotation process, using roasting-magnetic and regrinding-magnetic separation, the iron concentrate with iron grade and iron recovery of 60.31%, 87.49% was obtained. Mechanism of reduction-roasting was studied by means of XRD in the end.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 232 ◽  
Author(s):  
Chang Tang ◽  
Keqing Li ◽  
Wen Ni ◽  
Duncheng Fan

Iron ore tailings (IOTs) are a form of solid waste produced during the beneficiation process of iron ore concentrate. In this paper, iron recovery from IOTs was studied at different points during a process involving pre-concentration followed by direct reduction and magnetic separation. Then, slag-tailing concrete composite admixtures were prepared from high-silica residues. Based on the analyses of the chemical composition and crystalline phases, a pre-concentration test was developed, and a pre-concentrated concentrate (PC) with an iron grade of 36.58 wt % and a total iron recovery of 83.86 wt % was obtained from a feed iron grade of 12.61 wt %. Furthermore, the influences of various parameters on iron recovery from PC through direct reduction and magnetic separation were investigated. The optimal parameters were found to be as follows: A roasting temperature of 1250 °C, a roasting time of 50 min, and a 17.5:7.5:12.5:100 ratio of bitumite/sodium carbonate/lime/PC. Under these conditions, the iron grade of the reduced iron powder was 92.30 wt %, and the iron recovery rate was 93.96 wt %. With respect to the original IOTs, the iron recovery was 78.79 wt %. Then, highly active slag-tailing concrete composite admixtures were prepared using the high-silica residues and S75 blast furnace slag powder. When the amount of high-silica residues replacing slag was 20%, the strength of cement mortar blocks at 7 days and 28 days was 33.11 MPa and 50 MPa, respectively, whereas the activity indices were 89 and 108, respectively. Meanwhile, the fluidity rate was appropriately 109. When the content of high-silica residues replacing slag was not more than 30%, the quality of mineral admixtures was not reduced. Last but not least, reusing the high-silica residues during iron recovery enabled the complete utilization of the IOTs.


2014 ◽  
Vol 933 ◽  
pp. 125-131 ◽  
Author(s):  
Han Quan Zhang

Magnetizing roasting followed by magnetic separation is a compound technique for the beneficiation optimization of Huangmei refractory limonite. The natural limonite samples are obtained from Huangmei, Hubei province. The samples are characterized by TG-DTG-DSC. The content of major components is analyzed by SEM-XRAY, which is found that the sample iron mainly occurs in the form of limonite, with impurities including quartz, kaolinite, and barite. The feasibility of oxidized iron ore magnetic roasting limonite by multi-grade dynamic state magnetizing roasting is investigated. The effects of operation parameters such as roasting atmosphere, temperature and roasting duration are analyzed. The results show that: in the condition of the volume fraction of CO is 2% to 5%, the temperature is 700-780°C, and the roasting duration is 20 to 30 minutes. By multi-grade dynamic state magnetizing roasting, the grade of roasting limonite is nearly 33%, and the feasibility of separation is effective. A good index is created through simple mineral processing, the iron grade of concentrate reaches to 60% and the iron recovery rate reaches to 83.94%. It reveals that the multi-grade dynamic state magnetizing roasting device has a remarkable effect on roasting limonite.


2012 ◽  
Vol 535-537 ◽  
pp. 746-749
Author(s):  
Wei Zhi Wang ◽  
Li Ping Chen ◽  
Chun Guang Yang

Test was made on separating iron from a ultra-low-grade vanadium titanium magnetite ore by a process of tailing discarding at a coarser size,staged grinding and staged low intensity magnetic separation. The results show that when the raw ore is treated by permanent dry magnetic separator with low intensity magnetic separation at 12~0 mm size,qualified tailings of about 20% yield can be discarded.The coarse concentrate is grounded in two stages. With the first stage grinding size being 45% -200 mesh and the second stage,75% -200 mesh,and then treated by two stage low intensity magnetic separation.As a result,an iron concentrate with a TFe grade of 65.80%and an iron recovery of 47.74%can be achieved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


2013 ◽  
Vol 303-306 ◽  
pp. 2473-2476
Author(s):  
Wei Zhi Wang ◽  
Li Hui Zhou ◽  
Chun Guang Yang

The mineral processing experimental research was carried out on the hematite bearing characteristics of low grade, fine grain,complex composition. The results showed that using the technological flowsheet of “stage grinding- low intensity magnetic separation”, the iron concentrate with recovery of 36.56% and grade of 65.85% Fe can be obtained. And the iron concentrate with recovery of 17.23% and grade of 63.53% Fe can be obtained by “stage grinding-HIMS process-reverse flotation” process. The final iron concentrate with TFe grade of 65.10%,yield of 19.19% and total iron recovery of 53.79% from the raw ores with TFe grade of 23.41% was obtained, with the first stage grinding size being 55% -0.074mm and the second stage,93% -0.074mm.


2017 ◽  
Vol 53 (3) ◽  
pp. 559-564 ◽  
Author(s):  
E. K. Yakubailik ◽  
A. D. Balaev ◽  
I. M. Ganzhenko

2011 ◽  
Vol 201-203 ◽  
pp. 2749-2752
Author(s):  
Shu Xian Liu ◽  
Li Li Shen ◽  
Jin Xia Zhang

The grade of the crude hematite-limonite ore is 39.79%. The main metallic minerals are hematite-limonite. Hematite has disseminated structure distributed in the gangue. Limonite was inlayed as stars in hematite. Due to their fine dissemination and close association with gangue minerals, the hematite and limonite particles are hard to be fully liberated, bringing difficulty in their separation. Staged grinding-separation process consisting of high intensity magnetic separation and reverse floatation wag adopted in the beneficiation test on the regionally representative hematite—limonite ore resource. At a grind of 70.0% -200 mesh for the primary grinding and 98.7% -200 mesh for the secondary grinding, the final iron concentrate grade 58.26% and having an iron recovery of 8.33% can be achieved after reverse flotation process test on magnetic concentrate.


2011 ◽  
Vol 347-353 ◽  
pp. 157-162
Author(s):  
Jun Liu ◽  
Jiang An Chen

Recovering valuable metal from tailings has always been one of national resource comprehensive utilization key research subjects. There are copper-bearing magnetite which contains 43.31% of iron and 0.21% of copper in some places. After grinding-low intensity magnetic separation-flotation process can get 68.87% of iron concentrate with recovery 64.39% and copper concentrate which contain copper 12.67% with recovery of 75.30%. The experiment results will provide an effective way to comprehensive utilize the resource in one area.


Sign in / Sign up

Export Citation Format

Share Document