Local Kramers–Kronig Relations between the Attenuation Coefficient and Phase Velocity of Longitudinal Ultrasonic Waves in Polymer Composites

2019 ◽  
Vol 65 (2) ◽  
pp. 158-164 ◽  
Author(s):  
A. A. Karabutov ◽  
N. B. Podymova ◽  
Yu. G. Sokolovskaya
1979 ◽  
Vol 15 (3) ◽  
pp. 316-317 ◽  
Author(s):  
V. M. Mel'nikov ◽  
�. A. Putnin'sh ◽  
V. O. Putninya ◽  
V. P. Karlivan

1966 ◽  
Vol 2 (4) ◽  
pp. 425-427
Author(s):  
V. V. Andrievich ◽  
S. E. Mogilevskaya ◽  
S. T. Nakhrov ◽  
G. P. Starkov

Holzforschung ◽  
2000 ◽  
Vol 54 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Voichita Bucur ◽  
Simone Garros ◽  
Claire Y. Barlow

Summary The effect of hydrostatic pressure on the density, the ultrasonic velocities and the microstructure of spruce and cherry wood has been studied. Generally speaking, under hydrostatic pressure wood becomes less heterogeneous and less anisotropic than natural wood. In spruce, crushing and buckling of the thin-walled cells in the earlywood takes place. This also has the effect of disrupting the medullary rays, which assume a zig-zag path through the structure. Cherry has a much more homogeneous structure, and the main effect of the hydrostatic pressure is compaction of the vessels by buckling of the walls. The fibres are scarcely affected by the treatment. The width of the earlywood zone decreased after the application of pressure by 26% in spruce, and by 11% in cherry. The average density was increased by the hydrostatic pressure by 26% for spruce and by 46% for cherry. The densitometric profile of spruce demonstrates significant changes following the pressure treatment, with the minimum density DMin increasing and the maximum density DMax decreasing. For cherry, the densitometric profile is shifted rather uniformly towards higher densities, and the annual ring profile is spatially slightly compacted but otherwise similar to that of untreated wood. The anisotropy of wood (expressed by the ratio of acoustic invariants) decreased by 56% for spruce and by 33% for cherry. The structural damage in spruce is predominantly found in the radial (R) direction, and this corresponds to a reduction of 73% in the velocity of the longitudinal ultrasonic waves in the radial direction, VRR. In cherry, the structural damage is mainly in the transverse, T direction. The velocity of the longitudinal ultrasonic waves in the transverse direction, VTT is reduced by 44%. The medullary rays in cherry seem to be the most important anatomical feature influencing the propagation of ultrasonic waves.


2019 ◽  
Vol 24 (2) ◽  
pp. 277-284
Author(s):  
Dris El Abassi ◽  
Bouazza Faiz ◽  
Abderrahmane Ibhi ◽  
Idris Aboudaoud

We present the results of an ultrasonic pulse-echo technique and its potential to classify iron meteorites into hexahedrites, octahedrites and ataxites by determining their acoustic impedance and phase velocity. Our technique has been adapted from those used in the field of ultrasonic non-destructive investigation of a variety of materials. The main advantage of our technique is that it does not need any preparation of the meteorites like cutting and etching and therefore is rapid, easy and non-destructive. In essence, a broadband acoustic transducer is used in a monostatic pulse-echo configuration which means that both the transducer and the meteorite sample are located in a water bath and adjusted in the way that the ultrasonic pulse shit the meteorite sample at normal incidence. Then the reflected pulses from the front and rear faces of the meteorite sample are measured with the emitting transducer, digitally recorded and processed to analyze the signal. After Fourier transforming the echoed pulses from the front and the rear face of the meteorite sample, the calculated reflection coefficients yield the phase velocity and the acoustic impedance. Our study investigates a variety of iron meteorites collected in Morocco and other countries and it helps to understand how the nickel content of these meteorites affects the acoustic impedance. It reveals that the acoustic impedance of iron meteorites increases with increasing nickel content, so that a further refinement of our technique might have the potential to classify iron meteorites directly and reliably into hexahedrites, octahedrites and ataxites without destroying them.


Sign in / Sign up

Export Citation Format

Share Document