The Simulation of Orbit Decay of Double Neutron Star System PSR J1906+0746 by the Gravitational Wave Radiation

2019 ◽  
Vol 63 (12) ◽  
pp. 1090-1094
Author(s):  
Peng Liu ◽  
Cheng-Min Zhang ◽  
Di Li ◽  
Yi-Yan Yang ◽  
Jie Zhang ◽  
...  
2017 ◽  
Vol 13 (S337) ◽  
pp. 146-149 ◽  
Author(s):  
Robert D. Ferdman ◽  

AbstractPSR J1913+1102 is a double neutron star system (DNS) discovered in the Pulsar Arecibo L-band Feed Array survey. We have now very precisely measured the rate of advance of periastron for the system and the Einstein delay. From general relativity, this results in precise mass measurements: 1.65 ± 0.05 and 1.24 ± 0.05 M⊙ for the pulsar and neutron-star companion, respectively. This makes PSR J1913+1102 both the most massive double neutron star system known, and the most asymmetric in mass among compact DNS binaries. This asymmetry will allow for stringent limits on the effects of dipolar gravitational-wave radiation, predicted by alternative theories of gravity, as well as insight into heavy-element production from the eventual merger of this system and others like it. Further observations will also tighten constraints on formation and evolution models; this is crucial for understanding the DNS population, for which there are relatively few mass measurements.


2020 ◽  
Vol 101 (4) ◽  
Author(s):  
Jianwei Zhang ◽  
Chengmin Zhang ◽  
Wuming Yang ◽  
Yiyan Yang ◽  
Di Li ◽  
...  

2021 ◽  
Vol 503 (2) ◽  
pp. 2776-2790
Author(s):  
Shenghua Yu ◽  
Youjun Lu ◽  
C Simon Jeffery

ABSTRACT We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star–white-dwarf (NS–WD) binaries, and the detectability of these binaries by space GW detectors (e.g. Laser Interferometer Space Antenna, LISA; Taiji; Tianqin). A NS–WD binary becomes contact when the WD component fills its Roche lobe, at which the GW frequency ranges from ∼0.0023 to 0.72 Hz for WD with masses ∼0.05–1.4 M⊙. We find that some high-mass NS–WD binaries may undergo direct coalescence after unstable mass transfer. However, the majority of NS–WD binaries can avoid direct coalescence because mass transfer after contact can lead to a reversal of the orbital evolution. Our model can well interpret the orbital evolution of the ultra-compact X-ray source 4U 1820–30. For a 4-yr observation of 4U 1820–30, the expected signal-to-noise-ratio (SNR) in GW characteristic strain is ∼11.0/10.4/2.2 (LISA/Taiji/Tianqin). The evolution of GW frequencies of NS–WD binaries depends on the WD masses. NS–WD binaries with masses larger than 4U 1820–30 are expected to be detected with significantly larger SNRs. For a $(1.4+0.5) \, {\rm M}_{\odot }$ NS–WD binary close to contact, the expected SNR for a one week observation is ∼27/40/28 (LISA/Taiji/Tianqin). For NS–WD binaries with masses of $(1.4+\gtrsim 1.1) \, {\rm M}_{\odot }$, the significant change of GW frequencies and amplitudes can be measured, and thus it is possible to determine the binary evolution stage. At distances up to the edge of the Galaxy (∼100 kpc), high-mass NS–WD binaries will be still detectable with SNR ≳ 1.


2018 ◽  
Vol 618 ◽  
pp. A14 ◽  
Author(s):  
You Wu ◽  
Xuefei Chen ◽  
Zhenwei Li ◽  
Zhanwen Han

Context. Binary population synthesis predicts the existence of subdwarf B stars (sdBs) with neutron star (NS) or black hole (BH) companions. Several works have been dedicated to finding such systems, but none has been confirmed yet. Theoretically, the formation of sdBs with white dwarf (WD) and main sequence (MS) companions has been well investigated, while those with NS or BH companions remain to be explored further. Aims. We systematically investigate the formation of sdB+NS binaries from binary evolution and aim to obtain some clues for a search for such systems. Methods. We started from a series of MS+NS systems and determined the parameter spaces for producing sdB+NS binaries from the stable Roche-lobe overflow (RLOF) channel and from the common envelope (CE) ejection channel. The parameters for sdB+NS binaries were obtained from detailed binary evolution calculation with the code called modules for experiments in stellar astrophysics (MESA), and the CE parameters were given by the standard energy budget for CE evolution. The MS star had an initial mass ranging from 0.8 to 5 M⊙. Various NS accretion efficiencies and NS masses were examined to investigate the effects they have. We show the characteristics of the produced sdB+NS systems, such as the mass of components, orbital period, the semi-amplitude of the radial velocity (K), and the spin of the NS component. Results. sdB+NS binaries can be produced either from stable RLOF or from CE ejection. In the stable RLOF channel, sdBs can be formed when the donor starts mass transfer close to the tip of the giant branch if the donor has an initial mass ≤2.0 M⊙. For more massive donors, sdBs can be formed when the donor starts mass transfer during the Hertzsprung gap or near the end of the MS. The orbital period of sdB+NS binaries produced in this way ranges from several days to more than 1000 days and moves toward the short-period (∼hr) side with increasing initial MS mass. The highest K is about 150 km s−1 for an MS star of initially 5 M⊙. However, the sdB+NS systems that result from CE ejection have very short orbital periods and then high values of K (up to 800 km s−1). Such systems are born in very young populations (younger than 0.3 Gyr) and are potential gravitational wave sources that might be resolved by the Laser Interferometer Space Antenna (LISA) in the future. Gravitational wave radiation may again bring them into contact on a timescale of only ∼Myr. As a consequence, they are rare and hard to discover. The pulsar signal is likely a feature of sdB+NS systems caused by stable RLOF, and some NS components in sdB binaries may be millisecond pulsars. Various NS accretion efficiencies and NS masses change some properties of sdB+NS binaries, but not our general results.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 370-371
Author(s):  
C. M. Zhang

AbstractThe gravitational wave radiation will release the energy momentum, which will dissipate the rotation of neutron star while in the accretion process. If the deformation of star is known, then we can estimate the maximum spin frequency of pulsar, based on which we can interpret why the spin periods of all millisecond pulsars cannot be less than one millisecond.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Rossella Gamba ◽  
Matteo Breschi ◽  
Sebastiano Bernuzzi ◽  
Michalis Agathos ◽  
Alessandro Nagar

Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


2011 ◽  
Vol 417 (3) ◽  
pp. 2288-2299 ◽  
Author(s):  
A. Mastrano ◽  
A. Melatos ◽  
A. Reisenegger ◽  
T. Akgün

Sign in / Sign up

Export Citation Format

Share Document