Model for the explosion of a critical-mass neutron star in a binary system

2010 ◽  
Vol 36 (3) ◽  
pp. 191-203 ◽  
Author(s):  
K. V. Manukovskii
2013 ◽  
Vol 22 (11) ◽  
pp. 1360009 ◽  
Author(s):  
REMO RUFFINI

We review recent progress in our understanding of the nature of Gamma Ray Bursts (GRBs) and in particular, of the relationship between short GRBs and long GRBs. The first example of a short GRB is described. The coincidental occurrence of a GRB with a supernova (SN) is explained within the induced gravitational collapse (IGC) paradigm, following the sequence: (1) an initial binary system consists of a compact carbon–oxygen (CO) core star and a neutron star (NS); (2) the CO core explodes as a SN, and part of the SN ejecta accretes onto the NS which reaches its critical mass and collapses to a black hole (BH) giving rise to a GRB; (3) a new NS is generated by the SN as a remnant. The observational consequences of this scenario are outlined.


Nature ◽  
1996 ◽  
Vol 382 (6587) ◽  
pp. 141-144 ◽  
Author(s):  
Pascal Daumerie ◽  
Vassiliki Kalogera ◽  
Frederick K. Lamb ◽  
Dimitrios Psaltis
Keyword(s):  

1996 ◽  
Vol 165 ◽  
pp. 57-64
Author(s):  
Pranab Ghosh

In this symposium, I have been given the task of summarizing our current understanding of the evolutionary history of spin periods of the neutron stars that we now see as binary and millisecond pulsars, i.e., recycled pulsars. We believe that a newborn, fast-spinning neutron star (with a rather high magnetic field ∼1011–1013 G) in a binary system first operates as a spin-powered pulsar, subsequently as an accretion-powered pulsar when accretion begins after the pulsar has been spun down adequately, and finally as a spin-powered pulsar for the second time after having been recycled to become a very fast-rotating neutron star (with a rather low magnetic field ∼108–1011 G) (see Ghosh 1994a, b, hereafter G94a, b).


1998 ◽  
Vol 15 (2) ◽  
pp. 250-253
Author(s):  
Jianke Li ◽  
Dayal T. Wickramasinghe

AbstractX-ray binaries in which the accreting component is a neutron star commonly exhibit significant changes in their spin. In the system Cen X-3, a disk accreting binary system, the pulsar was observed to spin up at a rate ḟ = 8 × 10−13 Hz s−1 when averaged over the past twenty years, but significant fluctuations were observed above this mean. Recent BASTE observations have disclosed that these fluctuations are much larger than previously noted, and appeared to be a system characteristic. The change in the spin state from spin-up to spin-down or vice-versa occurs on a time scale that is much shorter than the instrument can resolve (≤1 d), but appears always to be a similar amplitude, and to occur stochastically. These observations have posed a problem for the conventional torque–mass accretion relation for accreting pulsars, because in this model the spin rate is closely related to the accretion rate, and the latter needs to be finely tuned and to change abruptly to explain the observations. Here we review recent work in this direction and present a coherent picture that explains these observations. We also draw attention to some outstanding problems for future studies.


2014 ◽  
Vol 786 (2) ◽  
pp. 127 ◽  
Author(s):  
Teruaki Enoto ◽  
Makoto Sasano ◽  
Shin'ya Yamada ◽  
Toru Tamagawa ◽  
Kazuo Makishima ◽  
...  
Keyword(s):  

1971 ◽  
Vol 10 (3) ◽  
pp. 464-470 ◽  
Author(s):  
George E. McCluskey ◽  
Yoji Kondo

2018 ◽  
Vol 168 ◽  
pp. 01006
Author(s):  
J. A. Rueda ◽  
R. Ruffini ◽  
J. F. Rodriguez ◽  
M. Muccino ◽  
Y. Aimuratov ◽  
...  

We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.


1995 ◽  
Vol 231 (1-2) ◽  
pp. 437-440
Author(s):  
A. Treves ◽  
E. Szuszkiewicz ◽  
M. Tavani

Astrophysics ◽  
1970 ◽  
Vol 6 (3) ◽  
pp. 214-217
Author(s):  
P. R. Amnuél' ◽  
O. Kh. Guseinov
Keyword(s):  

2020 ◽  
Vol 495 (2) ◽  
pp. 2509-2514
Author(s):  
M Echeveste ◽  
M L Novarino ◽  
O G Benvenuto ◽  
M A De Vito

ABSTRACT We study the evolution of close binary systems in order to account for the existence of the recently observed binary system containing the most massive millisecond pulsar ever detected, PSR J0740+6620, and its ultra-cool helium white dwarf companion. In order to find a progenitor for this object we compute the evolution of several binary systems composed by a neutron star and a normal donor star employing our stellar code. We assume conservative mass transfer. We also explore the effects of irradiation feedback on the system. We find that irradiated models also provide adequate models for the millisecond pulsar and its companion, so both irradiated and non irradiated systems are good progenitors for PSR J0740+6620. Finally, we obtain a binary system that evolves and accounts for the observational data of the system composed by PSR J0740+6620 (i.e. orbital period, mass, effective temperature and inferred metallicity of the companion, and mass of the neutron star) in a time scale smaller than the age of the Universe. In order to reach an effective temperature as low as observed, the donor star should have an helium envelope as demanded by observations.


Sign in / Sign up

Export Citation Format

Share Document