Cross-polarization with radio-frequency field phase and amplitude modulation under magic-angle spinning conditions

2006 ◽  
Vol 102 (1) ◽  
pp. 91-101 ◽  
Author(s):  
S. V. Dvinskikh ◽  
V. I. Chizhik
1997 ◽  
Vol 101 (16) ◽  
pp. 3240-3249 ◽  
Author(s):  
Susan M. De Paul ◽  
Matthias Ernst ◽  
Jay S. Shore ◽  
Jonathan F. Stebbins ◽  
Alexander Pines

2021 ◽  
Vol 2 (1) ◽  
pp. 523-543
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


2021 ◽  
Author(s):  
Kathrin Aebischer ◽  
Zdeněk Tošner ◽  
Matthias Ernst

Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions resulting in artifacts or degraded performance of experiments. In solid-state NMR under magic-angle spinning, the radial component becomes time-dependent because the rf-irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyze the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations as well as numerical simulations taking into account the time dependence of the rf field. We find that compared to the static part of the rf-field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.


Sign in / Sign up

Export Citation Format

Share Document