silanol groups
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 35)

H-INDEX

31
(FIVE YEARS 3)

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 75-83
Author(s):  
D. B. Nasiedkin ◽  
◽  
M. O. Nazarchuk ◽  
A. G. Grebenyuk ◽  
L. F. Sharanda ◽  
...  

Метою даної роботи є оцінка енергетичної сприятливості утворення різних молібдатних груп (≡Si‑O‑)2Mo(=O)2 та =Si(‑O‑)2Mo(=O)2 під час термічно ініційованого диспергування MoO3 на гідроксильованій поверхні SiO2. Для цього було здійснено квантовохімічне моделювання реакції O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O в температурному інтервалі 300–1100 K із використанням обмеженого методу Хартрі-Фока (наближення ЛКАО) з валентним базисом SBKJC (Stevens-Basch-Krauss-Jasien-Cundari). Кластер O12Si10(OH)16, який являє собою структурний фрагмент кристала β‑кристобаліту, був використаний як модель високогідроксильованої поверхні кремнезему. Ми розглянули дві структури молібдатних груп (≡Si‑O‑)2Mo(=O)2, прикріплених до кремнеземного кластера O12Si10(OH)16 через силанольні групи. Молібдатні групи (Etot ‑584.60147 Hartree), прикріплені до кремнеземного кластера через віддалені силанольні групи, виявляються більш енергетично вигідними, ніж молібдатні групи (Etot ‑584.56565 Hartree), прикріплені до кремнеземного кластера через сусідні силанольні групи. Енергія молібдатних груп =Si(‑O‑)2Mo(=O)2 (Etot ‑584.48399 Hartree), прикріплених до кремнеземного кластера O12Si10(OH)16 через силандіольні групи, менш енергетично вигідні в порівнянні з подібними групами, прикріпленими через силанольні групи, через більше напруження кута між зв’язками. Знайдено, що реакція O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O в температурному інтервалі 300–1100 K, змодельована шляхом квантовохімічних розрахунків, свідчить, що процес диспергування MoO3 на гідроксильованій поверхні SiO2 є енергетично вигідним. Експ The aim of the present work is to evaluate the energetic favourability of the formation of different molybdate species (≡Si‑O‑)2Mo(=O)2 and =Si(‑O‑)2Mo(=O)2 during the thermally induced MoO3 dispergation on hydroxylated SiO2 surface. In order to do this a quantum chemical modelling of the reaction O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O within the temperature interval of 300–1100 K was undertaken using the Restricted Hartree-Fock method (the LCAO approximation) with the SBKJC (Stevens-Basch-Krauss-Jasien-Cundari) valence basis set. The cluster O12Si10(OH)16 which represents a structural fragment of a β‑cristobalite crystal was used in this work as a model of highly hydroxylated silica surface. We considered two structures of molybdate (≡Si‑O‑)2Mo(=O)2 species attached to O12Si10(OH)16 silica cluster via silanol groups. Molybdate species (Etot ‑584.60147 Hartree) attached to silica cluster via distant silanols appeared more energetically favourable than molybdate species (Etot ‑584.56565 Hartree) attached to silica cluster via nearby silanols. The energy of molybdate =Si(‑O‑)2Mo(=O)2 species (Etot ‑584.48399 Hartree) attached to O12Si10(OH)16 silica cluster via silanediol group is less favourable energetically in comparison with those attached via silanol groups because of higher bond angle straining. The reaction O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O in the temperature interval of 300–1100 K which simulates by quantum chemical calculations the dispergation of MoO3 on hydroxylated SiO2 surface was found to be energetically favourable. The experimentally optimised temperature of ca. 800 K required for dispergation of MoO3 on hydroxylated SiO2 surface is determined by MoO3 evaporation and transportation via the gas phase. ериментальна оптимальна температура (близько 800 K), потрібна для диспергування MoO3 на гідроксильованій поверхні SiO2, визначається випаровуванням та перенесенням MoO3 в газовій фазі.


2021 ◽  
Vol 12 (4) ◽  
pp. 314-325
Author(s):  
P. O. Kuzema ◽  
◽  
A. V. Korobeinyk ◽  
V. A. Tertykh ◽  
◽  
...  

Fumed silica has found widespread application in industry due to variety of fascinating properties. Owing to its specific manufacturing process, it consists of finely dispersed particles and is featured with large specific surface area covered by profoundly reactive silanol groups which are available for chemical grafting. Spherical shape of fumed silica particles and lacking porosity provides a space-filling structure. These characteristics implement the fume silica’s utilization as high-surface-area carriers for various catalysts, i.e. metallic nanometer-sized particles, organic moieties, etc. Currently a great attention is called to on-surface grafting to improve the silica-based carrier. Most of research is carried out in area of liquid phase chemistry involving an abundance of expensive and often toxic solvents while the space-filling properties of silica are favoring reactions in fluidized bed conditions. In current research fumed silica (A-300) was a subject for hydridesilylation with triethoxysilane under fluidized bed conditions. In all synthesis reported in current research the insignificant amount of solvent (1.00 wt. % of the amount used in typical wet-chemical modifications method) was spent for the silica surface silylation. While the mass ratio of silica/TES was kept constant, other conditions, i.e. solvent/catalyst presence, surface pretreatment, additional treatment with water, and the fluidized bed heating mode have been varied. FTIR spectroscopy revealed the interaction between groups of triethoxysilane and silica surface silanol groups and demonstrated the effect of modification conditions on the density of the hydridesilyl groups coverage. The results of FTIR spectroscopic studies have confirmed the presence of grafted silicon hydride groups on the surface of modified silica, as well as the presence of ethoxy and/or silanol groups – either intact or formed due to hydrolysis of the ethoxy groups. Titrimetric and spectrophotometric analysis was performed to estimate the concentration of grafted SiH groups (in all samples prepared under fluidized bed conditions their concentration ranged within about 0.28–0.55 mmol/g as dependent on the reaction conditions). Other important aspects of fluidization such as the presence of solvent and/or hydrolyzing agent, bed heating mode and the effect of the silica sample thermal pre-treatment are also discussed.


2021 ◽  
Vol 12 (4) ◽  
pp. 358-364
Author(s):  
A. A. Kravchenko ◽  
◽  
E. M. Demianenko ◽  
A. G. Grebenyuk ◽  
M. I. Terets ◽  
...  

The structure and energy characteristics of structures formed during arginine adsorption on silica surface from aqueous solution were studied by the density functional theory (B3LYP) method using a valence-split basis set 6-31++G(d,p) within the continuous solvent model (PCM) and supermolecular approximation. The equilibrium structural and energy parameters of the protonated arginine molecule in the gas phase dependent on the location of the hydrogen atom are considered including those of two possible zwitterions. The structure of the arginine ion Н2А+, which is formed when a proton attaches to a molecule or zwitterion of a given amino acid, has been elucidated. To determine the deprotonation constant of the carboxyl group in an acidic medium, the complexes of the arginine molecule (AH32+) in the state with undissociated and deprotonated carboxyl groups are considered. The simulation of the acid medium was performed by taking into account the interaction with two hydrated HCl ion pairs, which provided the protonation of the a-amino group and the nitrogen atom of amino group within the guanidine group. In the study on the interaction of an arginine molecule with silica surface in an aqueous medium, complexes containing a Si8O12(OH)7O– ion with a deprotonated silanol group, six water molecules, and an arginine molecule with a deprotonated carboxyl group were considered. It has been found that the arginine molecule is most likely to be adsorbed on slica surface with formation of hydrogen bonds between the hydrogen atoms of the a-amino group and the oxygen atom of the deprotonated silanol group. In this case, the formation of a hydrogen bond between the oxygen atom of the carboxyl group and the hydrogen atom of the neighboring silanol group is possible. Slightly less likely is adsorption of arginine molecules due to interaction of the guanidine group with silanol groups of the surface. According to the calculated data, the adsorption of the zwitterionic form of the arginine molecule from the aqueous solution is equally likely to occur due to interaction of silanol groups of silica surface with both the carboxyl group and the guanidine group.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6679
Author(s):  
Toshifumi Sugama ◽  
Tatiana Pyatina

This study assessed the possibility of using polymethylhydrosiloxane (PMHS)-treated fly ash cenospheres (FCS) for formulating a thermally insulating and thermal shock (TS)-resistant cementitious blend with calcium aluminate cement. To prevent FCS degradation in an alkaline cement environment at high temperatures, the cenospheres were pre-treated with sodium metasilicate to form silanol and aluminol groups on their surface. These groups participated in a dehydrogenation reaction with the functional ≡Si–H groups within PMHS with the formation of siloxane oxygen-linked M-FCS (M: Al or Si). At high hydrothermal temperatures of 175 and 250 °C, some Si–O–Si and SiCH3 bonds ruptured, causing depolymerization of the polymer at the FCS surface and hydroxylation of the raptured sites with the formation of silanol groups. Repolymerization through self-condensation between the silanol groups followed, resulting in the transformation of siloxane to low crosslinked silicon-like polymer as a repolymerization-induced product (RIP) without carbon. The RIP provided adequate protection of FCS from pozzolanic reactions (PR), which was confirmed by the decline in zeolites as the products of PR of FCS. Cements with PMHS-treated FCS withstood both hydrothermal and thermal temperature of 250 °C in TS tests, and they also showed improved compressive strength, toughness, and water repellency as well as decreased thermal conductivity. The lubricating properties of PMHS increased the fluidity of lightweight slurries.


Author(s):  
Najmeh Lotfian ◽  
AmirAbbas Nourbakhsh ◽  
Seyed Nezamoddin Mirsattari ◽  
Kenneth J.D. Mackenzie
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 4030
Author(s):  
Alexandru Cocean ◽  
Iuliana Cocean ◽  
Nicanor Cimpoesu ◽  
Georgiana Cocean ◽  
Ramona Cimpoesu ◽  
...  

A new possible method to produce a transdermal patch is proposed in this paper. The study refers to the pulsed laser deposition method (PLD) applied on turmeric target in order to obtain thin layers. Under high power laser irradiation of 532 nm wavelength, thin films containing curcuminoids were obtained on different substrates such as glass and quartz (laboratory investigation) and hemp fabric (practical application). Compared FTIR, SEM-EDS and LIF analyses proved that the obtained thin film chemical composition is mainly demethoxycurcumin and bisdemethoxycurcumin which is evidence that most of the curcumin from turmeric has been demethixylated during laser ablation. Silanol groups with known role into dermal reconstruction are evidenced in both turmeric target and curcuminoid thin films. UV–VIS reflection spectra show the same characteristics for all the curcuminoid thin films, indicating that the method is reproducible. The method proves to be successful for producing a composite material, namely curcuminoid transdermal patch with silanol groups, using directly turmeric as target in the thin film deposited by pulsed laser technique. Double layered patch curcuminoid—silver was produced under this study, proving compatibility between the two deposited layers. The silver layer added on curcuminoid-silanol layer aimed to increase antiseptic properties to the transdermal patch.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Maria Owińska ◽  
Aleksandra Chechelska-Noworyta ◽  
Zbigniew Olejniczak ◽  
Magdalena Hasik

AbstractLinear polyhydromethylsiloxane (PHMS) was functionalized with nitrogen-containing organic compounds: N-allylaniline (Naa), N-allylcyclohexylamine (Nach), N-allylpiperidine (Nap) and 4-vinylpyridine (4VP) via hydrosilylation reaction in the presence of Pt0 complex (Karstedt’s catalyst) under mild conditions. Reaction course was followed by FTIR spectroscopy and final hydrosilylation products were characterized by FTIR, 1H, 29Si NMR and 29Si MAS-NMR spectroscopies as well as by elemental analysis. Results showed that functionalization of PHMS with N-allyl amines took place but in none of the systems it was complete. Hydrosilylation of Naa, Nach and Nap with PHMS led both, to the β and α addition products. 29Si NMR spectroscopy showed unequivocally that the reaction of PHMS with 4VP did not occur and the only reactions in the systems were hydrolysis of Si–H groups of PHMS followed by condensation of the silanol groups resulting in cross-linking of the polymer. All the functionalized polymers studied in the work contained reactive amine moieties prone to further modifications, therefore exhibit a great potential for various applications.


2021 ◽  
Vol 316 ◽  
pp. 68-74
Author(s):  
Sergey A. Koksharov ◽  
Nadezhda L. Kornilova ◽  
Elena N. Nikiforova

Ultrasonic dispersion of a silica hydrosol is compared with the effects of mechanical activation through the combined action of high shear stresses, ultrasound and cavitation. This action leads to breaking the siloxane bonds and increasing the content of silanol groups. The mechanical activation of binary silica system with acrylate dispersion promotes a chemisorption of oligoacrylate with the formation of Si – O – C and Si – C bonds. The effect of modification of oligoacrylate on the formation of a graft-copolymer and the stiffness of a composite material was evaluated.


Sign in / Sign up

Export Citation Format

Share Document