Dense cold matter

2015 ◽  
Vol 78 (5) ◽  
pp. 608-610
Author(s):  
A. V. Stavinskiy
Keyword(s):  
2012 ◽  
Vol 21 (11) ◽  
pp. 1242016
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

A significant question in experimental gravity is the nature of free fall of antiparticles under gravity and elaborate preparations are underway to directly test this with cold antihydrogen. Earlier, the Shapiro delay of supernova 1987A neutrinos was interpreted as testing the weak equivalence principle (WEP). We establish the surprising result that the Shapiro delay of relativistic particles does not test WEP for intrinsic properties or quantum numbers of particles or antiparticles. This is because essentially the entire gravitational mass of the relativistic neutrinos is contributed by kinetic energy, diluting to insignificance any EP violating contribution from intrinsic properties, by the relativistic factor. The crucial message here is that a true test of the WEP involving intrinsic properties of matter or antimatter — the foundation of relativistic gravity — necessarily requires nonrelativistic "cold" matter and antimatter.


2019 ◽  
Vol 90 (12) ◽  
pp. 123701 ◽  
Author(s):  
Michal Hejduk ◽  
Brianna R. Heazlewood
Keyword(s):  

2018 ◽  
Vol 27 (11) ◽  
pp. 1843018 ◽  
Author(s):  
John L. Friedman

Prior to the observation of a double neutron star inspiral and merger, its possible implications were striking. Events whose light and gravitational waves are simultaneously detected could resolve the 50-year mystery of the origin of short gamma-ray bursts; they might provide strong evidence for (or against) mergers as the main source of half the heaviest elements (the [Formula: see text]-process elements); and they could give an independent measurement of the Hubble constant. The closest events can also address a primary goal of gravitational-wave astrophysics: From the imprint of tides on inspiral waveforms, one can find the radius and tidal distortion of the inspiraling stars and infer the behavior of cold matter above nuclear density. Remarkably, the first observation of the inspiral and coalescence of a double neutron star system was accompanied by a gamma-ray burst and then an array of electromagnetic counterparts, and the combined effort of the gravitational-wave and astronomy communities has led to dramatic advances along all of these anticipated avenues of multimessenger astrophysics.


2010 ◽  
Vol 91 (3) ◽  
pp. 33001 ◽  
Author(s):  
J. T. Mendonça ◽  
H. Terças ◽  
G. Brodin ◽  
M. Marklund
Keyword(s):  

2006 ◽  
Vol 774 ◽  
pp. 561-564 ◽  
Author(s):  
A. Majumder ◽  
V. Koch ◽  
X.-N. Wang

Author(s):  
V. Zhdanov ◽  
A. Alexandrov ◽  
O. Stashko

We consider a homogeneous isotropic Universe filled with cold matter (with zero pressure) and dynamic dark energy in a form of a scalar field. For known scalar field potential V(φ), the Friedmann equations are reduced to a system of the first order equation for the Hubble parameter H(z) and the second order equation for the scalar field as functions of the redshift z. On the other hand, knowledge of H(z) allows us to get the scalar field potential in a parametric form for a known cold matter content and three dimensional curvature parameter. We analyze when the accepted model mimics the dependence H(z) derived in the framework of the other models, e.g., hydrodynamic ones. Two examples of this mimicry are considered. The first one deals with the case when H2(z)~ Ωm(1+z)3+ΩΛ, but Ωm parameter overestimates the input of the cold matter (dark matter+baryons). The resulting scalar field potential is V(φ)=a+bsinh2(cφ), where the constants a,b,c depend on the Ω – parameters of the problem. In the other example we assume that some part of the dark matter has a non-zero equation of state p=wε, -1<w<1. In this case H2(z)~ Ωdm1(1+z)3(1+w)+ Ωb+Ωdm2)(1+z)3+ΩΛ. The corresponding potentials are defined for positive values of φ. For both signs of w potential V(φ) is a monotonically increasing function with typically an asymptotically exponential behavior; though for some choice of parameters we may have a singularity of V(φ)on a finite interval. Then we consider fitting of the potential for w from the interval [-0.2,0.2] for three different values of Ωdm2 by means of a simple formula Vfit(φ)=p0+p1exp(p2 φ). The dependencies pi(w) are presented and the approximation error is estimated.


Sign in / Sign up

Export Citation Format

Share Document