Interaction of π+ and K+ Mesons with 13,15C and 15N Nuclei at Intermediate Energies within Glauber Diffraction Theory

2019 ◽  
Vol 82 (4) ◽  
pp. 408-414
Author(s):  
O. Imambekov ◽  
E. T. Ibraeva ◽  
Zh. A. Toksaba
1997 ◽  
Vol 06 (01) ◽  
pp. 161-175 ◽  
Author(s):  
Yu. A. Berezhnoy ◽  
V. Yu. Korda

On the basis of general diffraction theory we present a closed-form description that enables us to obtain the analytical expressions for the integrated cross-sections of different 3 H - and 3 He -nucleus interaction processes at intermediate energies.


Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
Joseph D. C. Peng

The relative intensities of the ED spots in a cross-grating pattern can be calculated using N-beam electron diffraction theory. The scattering matrix formulation of N-beam ED theory has been previously applied to imperfect microcrystals of gold containing stacking disorder (coherent twinning) in the (111) crystal plane. In the present experiment an effort has been made to grow single-crystalline, defect-free (111) gold films of a uniform and accurately know thickness using vacuum evaporation techniques. These represent stringent conditions to be met experimentally; however, if a meaningful comparison is to be made between theory and experiment, these factors must be carefully controlled. It is well-known that crystal morphology, perfection, and orientation each have pronounced effects on relative intensities in single crystals.The double evaporation method first suggested by Pashley was employed with some modifications. Oriented silver films of a thickness of about 1500Å were first grown by vacuum evaporation on freshly cleaved mica, with the substrate temperature at 285° C during evaporation with the deposition rate at 500-800Å/sec.


Author(s):  
J. M. Cowley ◽  
Sumio Iijima

The imaging of detailed structures of crystal lattices with 3 to 4Å resolution, given the correct conditions of microscope defocus and crystal orientation and thickness, has been used by Iijima (this conference) for the study of new types of crystal structures and the defects in known structures associated with fluctuations of stoichiometry. The image intensities may be computed using n-beam dynamical diffraction theory involving several hundred beams (Fejes, this conference). However it is still important to have a suitable approximation to provide an immediate rough estimate of contrast and an evaluation of the intuitive interpretation in terms of an amplitude object.For crystals 100 to 150Å thick containing moderately heavy atoms the phase changes of the electron wave vary by about 10 radians suggesting that the “optimum defocus” theory of amplitude contrast for thin phase objects due to Scherzer and others can not apply, although it does predict the right defocus for optimum imaging.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


Sign in / Sign up

Export Citation Format

Share Document