scholarly journals Thermodynamic properties of strongly coupled plasma in the presence of an external magnetic field

2014 ◽  
Vol 40 (7) ◽  
pp. 583-590 ◽  
Author(s):  
M. Begum ◽  
S. Baruah ◽  
N. Das
2014 ◽  
Vol 28 (26) ◽  
pp. 1450206 ◽  
Author(s):  
Yushan Li

Thermodynamics of trapped charged ideal spin-1 bosons confined in a magnetic field are investigated within semi-classical approximation and truncated-summation approach. It is shown that the critical temperature increases slightly at the first, and then decreases slowly with increasing external magnetic field. Charged spin-1 Bose gases present a crossover from diamagnetism to paramagnetism as the spin factor increases. Charged spin-1 Bose gases exhibit distinct thermodynamic behaviors from the spinless case.


2005 ◽  
Vol 20 (14) ◽  
pp. 1077-1085 ◽  
Author(s):  
MARICEL AGOP ◽  
EUGEN RADU ◽  
REINOUD SLAGTER

The dilatonic Ernst solution describing a Schwarzschild black hole immersed in a background magnetic field is generalized by including a Liouville-type potential in the action principle. We prove that the thermodynamic properties of this new black hole dilaton solution are unaffected by an external magnetic field passing through it.


2002 ◽  
Vol 17 (34) ◽  
pp. 2277-2281 ◽  
Author(s):  
EUGEN RADU

We prove that the thermodynamic properties of a Schwarzschild black hole are unaffected by an external magnetic field passing through it. Apart from the background subtraction prescription, this result is also obtained by using a counterterm method.


2020 ◽  
Vol 20 (1) ◽  
pp. 63-73
Author(s):  
Vitalii Kapitan ◽  
◽  
Egor Vasiliev ◽  
Yuriy Shevchenko ◽  
Alexander Perzhu ◽  
...  

We present results of numerical simulation of thermodynamics for array of Classical Heisenberg spins placed on 2D square lattice. By using Metropolis and Wang--Landau methods we show the temperature behaviour of system with competing Heisenberg and Dzyaloshinskii--Moriya interaction (DMI) in contrast with classical Heisenberg system. We show the process of nucleating of skyrmion depending on the value of external magnetic field.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chitrita Dasgupta ◽  
Sarit Maitra

Abstract Vortex motion of a cylindrical quantum plasma containing degenerate inertialess electrons and strongly correlated, non-degenerate inertial ions is studied. The electron exchange–correlation and ion–neutral collisional effects are taken into consideration, along with vertical external magnetic field and radial electric field. Considering generalized viscoelastic momentum equation for strongly coupled ions in quasi-crystalline state, variation of different rotational characteristics along radial distance are discussed numerically. Existence of shear rotation is observed near both the core and the periphery of the vortex, which is found to be modified by ion–ion correlation, quantum effects of the degenerate electrons, the ion–neutral collision, as well as by the magnetic field. It is noticed that electron exchange–correlation potential and quantum diffraction play major roles in modifying the rotational characteristics. Vorticity and the rate of increment of enstrophy with respect to radial distance, diminish to zero towards the periphery of the vortex. Also, it is noted that the ion–neutral collision may be responsible for reducing the increment of enstrophy.


Sign in / Sign up

Export Citation Format

Share Document