Failure of a Pearlitic Rail Steel with an Internal Macrocrack

Author(s):  
S. A. Atroshenko ◽  
S. S. Maier ◽  
V. I. Smirnov
Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 742 ◽  
Author(s):  
Khan ◽  
Yu ◽  
Wang ◽  
Jiang

The effect of cooling rate, ranging from 6 to 1 °C/s, on microstructure and mechanical properties in the coarse-grained heat affected zone (CGHAZ) of electroslag welded pearlitic rail steel has been investigated by using confocal scanning laser microcopy (CSLM) and Gleeble 3500 thermo-mechanical simulator. During heating, the formed austenite was inhomogeneous with fractions of untransformed ferrite, which has influenced the pearlite transformation during cooling by providing additional nucleation sites to pearlite. During cooling, at 6 °C/s, the microstructure was composed of martensite and bainite with little pearlite. From 4 to 1 °C/s, microstructures were completely pearlite. Lowering the cooling rate of the CGHAZ from 4 to 1 °C/s increased the pearlite start temperature and reduced the pearlite growth rate. Meanwhile, this increase in pearlite start temperature enlarged the pearlite interlamellar spacing. Alternatively, increasing pearlite interlamellar spacing in the CGHAZ by lowering the cooling rate from 6 to 1 °C/s reduced the hardness and tensile strength, whereas toughness was found unaffected by the pearlite interlamellar spacing. It has been found that a cooling rate of 4 °C/s leads to the formation of pearlite with fine interlamellar spacing of 117 nm in the CGHAZ of electroslag welded pearlitic rail steel where hardness is 425 HV, tensile strength is 1077 MPa, and toughness is 9.1 J.


2020 ◽  
Vol 72 (9) ◽  
pp. 1095-1102
Author(s):  
Gustavo Tressia ◽  
Luis H.D. Alves ◽  
Amilton Sinatora ◽  
Helio Goldenstein ◽  
Mohammad Masoumi

Purpose The purpose of this study is to develop a lower bainite structure consists of a dispersion of fine carbide inside plates of bainitic ferrite from chemical composition unmodified conventional pearlitic steel under bainitic transformation and to investigate its effect on tensile properties and wear resistance. Design/methodology/approach A commercial hypereutectoid pearlitic rail steel was subjected to three different bainitic transformation treatments followed by tempering to develop a desirable microstructure with a DIL805 BÄHR dilatometer. A comprehensive microstructural study was performed by scanning electron microscopy and energy dispersive x-ray spectroscopy. Finally, the mechanical properties and wear resistance were evaluated by tensile, microhardness, and pin-on-disc tests. Findings The results showed that the best combination of mechanical properties and sliding wear resistance was obtained in the sample subjected to bainitic transformation at 300°C for 600 s followed by tempering at 400°C for 300 s. This sample, which contained a bainitic ferrite structure, exhibited approximately 20% higher hardness and approximately 53% less mass loss than the as-received pearlitic sample due to the mechanically induced transformation in the contact surface. Originality/value Although pearlitic steel is widely used in the construction of railways, recent studies have revealed that bainitic transformation at the same rail steels exhibited higher wear resistance and fatigue strengths than conventional pearlitic rail at the same hardness values. Such a bainitic microstructure can improve the mechanical properties and wear resistance, which is a great interest in the railway industry. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0282/


2013 ◽  
Vol 19 (S2) ◽  
pp. 1820-1821
Author(s):  
H. Aglan ◽  
K. Prayakarao ◽  
A. Allie

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Wear ◽  
2014 ◽  
Vol 314 (1-2) ◽  
pp. 57-68 ◽  
Author(s):  
Nasim Larijani ◽  
Jim Brouzoulis ◽  
Martin Schilke ◽  
Magnus Ekh

Sign in / Sign up

Export Citation Format

Share Document