scholarly journals Formation of Weak Singularities on the Surface of a Dielectric Fluid in a Tangential Electric Field

2019 ◽  
Vol 45 (2) ◽  
pp. 65-68 ◽  
Author(s):  
E. A. Kochurin
Author(s):  
Miad Yazdani ◽  
Jamal Seyed-Yagoobi

The control of fluid flow distribution in micro-scale tubes is numerically investigated. The flow distribution control is achieved via electric conduction mechanism. In electrohydrodynamic (EHD) conduction pumping, when an electric field is applied to a fluid, dissociation and recombination of electrolytic species produces heterocharge layers in the vicinity of electrodes. Attraction between electrodes and heterocharge layers induces a fluid motion and a net flow is generated if the electrodes are asymmetric. The numerical domain comprises a 2-D manifold attached to two bifurcated tubes with one of the tubes equipped with a bank of uniquely designed EHD-conduction electrodes. In the absence of electric field, the total flow supplied at the manifold’s inlet is equally distributed among the tubes. The EHD-conduction, however, operates as a mechanism to manipulate the flow distribution to allow the flow through one branch surpasses the counterpart of the other branch. Its performance is evaluated under various operating conditions.


2018 ◽  
Vol 849 ◽  
pp. 277-311 ◽  
Author(s):  
Antarip Poddar ◽  
Shubhadeep Mandal ◽  
Aditya Bandopadhyay ◽  
Suman Chakraborty

The sedimentation of a surfactant-laden deformable viscous drop acted upon by an electric field is considered theoretically. The convection of surfactants in conjunction with the combined effect of electrohydrodynamic flow and sedimentation leads to a locally varying surface tension, which subsequently alters the drop dynamics via the interplay of Marangoni, Maxwell and hydrodynamic stresses. Assuming small capillary number and small electric Reynolds number, we employ a regular perturbation technique to solve the coupled system of governing equations. It is shown that when a leaky dielectric drop is sedimenting in another leaky dielectric fluid, the Marangoni stress can oppose the electrohydrodynamic motion severely, thereby causing corresponding changes in the internal flow pattern. Such effects further result in retardation of the drop settling velocity, which would have otherwise increased due to the influence of charge convection. For non-spherical drop shapes, the effect of Marangoni stress is overcome by the ‘tip-stretching’ effect on the flow field. As a result, the drop deformation gets intensified with an increase in sensitivity of the surface tension to the local surfactant concentration. Consequently, for an oblate type of deformation the elevated drag force causes a further reduction in velocity. For similar reasons, prolate drops experience less drag and settle faster than the surfactant-free case. In addition to this, with increased sensitivity of the interfacial tension to the surfactant concentration, the asymmetric deformation about the equator gets suppressed. These findings may turn out to be of fundamental significance towards designing electrohydrodynamically actuated droplet-based microfluidic systems that are intrinsically tunable by varying the surfactant concentration.


Sign in / Sign up

Export Citation Format

Share Document